nextupprevious
 

Properties of grain filter

Monotonicity:$ u\leq v \Rightarrow T_t u \leq T_t v$
Contrast invariance:$ g$ u.s.c. $ \nearrow$$ T_t\circ g = g\circT_t$
Affine invariance:$ \forall A\in \operatorname{GA}(\mathbb {R}^n)$$ T_t(u\,\circ\,A)\:=\: (T_{t/\vert\det A\vert}u)\,\circ\,A$
$ \rightarrow$Affine Morphological Scale-Space [Alvarez, Guichard, Lions, Morel 93], [Sapiro, Tannenbaum 93], [Moisan 98]
No regularity:$ u\:C^2, \nabla u(\mathbf{x})\neq 0\Rightarrow$$ \exists t>0$$ \forall h\leq t,\;T_h u(\mathbf{x}) = u(\mathbf{x})$ (``$ \frac{\partialu}{\partial t} = 0$'')
Causality and idempotency:$ \forall s,t,\,s\leq t$$ \existsT_{t,s}$ s.t. $ T_t\:=\:T_{t,s}\,\circ\,T_s$$ T_{t,s} = T_t$
Selfduality:$ \inf\sup = \sup\inf$, or equivalently $ T_t(-u) =-T_t(u)$ if $ u$ is continuous
No destruction of visual clues: preserves T-junctions, remaining curves do not move.
 



Summer School on Mathematical Problems in Image Processing, Trieste, Italy, September 4th-18th 2000