nextupprevious
 

Tree of shapes

Theorem: if $ X$ is unicoherent and locally connected$ u$upper semicontinuous,
                    then shapes of $ u$ are disjoint or nested

Examples$ X=\mathbb {R}^n$$ X=$ Jordan domain, $ X=\mathbb {S}^n$ ($ n\geq2$)...

Counter-examples$ X=\mathbb {S}^1$$ X=$ cylinder, $ X=$ torus...

$ u$ not semicontinuous:
\includegraphics [width=6.4cm]{IMAGES/contrex.eps}




Summer School on Mathematical Problems in Image Processing, Trieste, Italy, September 4th-18th 2000