

Université Paris IX-Dauphine

U.F.R. Mathématiques de la Décision

SPÉCIALITÉ : Mathématiques

N◦ attribué par la bibliothèque

| ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ |

THÈSE
Pour l’obtention du titre de

DOCTEUR ÈS SCIENCES

(arrêté du 30 mars 1992)

présentée et soutenue par

Pascal MONASSE

Morphological representation
of digital images and

application to registration

JURY

M. Vicent CASELLES Rapporteur
Mme Françoise DIBOS Examinateur
M. Frédéric GUICHARD Examinateur
M. Gary HEWER Rapporteur
M. Yves MEYER Président
M. Jean-Michel MOREL Directeur
M. Philippe SALEMBIER Rapporteur
M. Michel SCHMITT Examinateur

Présentée et soutenue publiquement le 30 juin 2000

to Alexandra

Acknowledgments

I would first like to thank Yves Meyer for having done me the honor of presiding this jury.

I am grateful to the referees of this thesis, Vicent Caselles, Gary Hewer and Philippe
Salembier, for having accepted this task, which they completed with the largest earnest,
and for the intelligence of their remarks and suggestions. I thank again Vicent, so as Colo-
ma Ballester and Tomeu Coll, for having allowed me to stay several times at the Univerity
of Balearic Islands, and for multiple passionate talks about images’ topology.

Françoise Dibos, Frédéric Guichard and Michel Schmitt accepted to be part of my
jury, I thank them sincerely. Frédéric knows how his ideas, suggestions and remarks have
influenced this thesis. I express him particularly my gratefulness and ensure him of my
friendship.

During four years, Jean-Michel Morel directed my research. This thesis owes largely to
his great availability, his dynamism, his open-mindedness, and of course his outstanding
scientific qualities. He permitted me to work on this thesis in simply perfect conditions.

The permanent exchanges among the group around Jean-Michel Morel are, I am sure,
essential elements in this success. I thank cordially Andrès Almansa, Frédéric Cao, Agnès
Desolneux, Jacques Froment, Yann Gousseau, Georges Koepfler, Said Ladjal, Jose-Luis
Lisani, François Malgouyres, Simon Masnou and Lionel Moisan for making this group so
agreeable and maintaining such a collective enthusiasm. I thank also the people working
or having worked at CEREMADE in University Paris-Dauphine, or at CMLA in ENS
Cachan, and more precisely Jérome Besnard, Pascal Bringas, Christophe Labourdette,
Martin Lefébure, Jacques-Olivier Moussafir, Nicolas Pajor, Olivia Sanchez, Michel Van-
breugel, Frédéric Vautrain and Nicolas Vayatis.

Lenny Rudin and the Cognitech’s team have revealed to me the industrial interest of
my research, I am grateful to them. Moreover, Lenny allowed me to discover linked works
of the highest interest, particularly a remarkable article of Kronrod, I thank him deeply.

6

Bernard Rougé and Leonid Yaroslavsky permitted me to understand well some prob-
lems in image processing, I would like to greet them.

At last, I thank Alexandra, Léna and my parents for their constant support during
these years.

Contents

0.1 General considerations . 13
0.2 Plan . 14

I Contrast Invariant Image Representation 15

1 Introduction 17
1.1 Different Image Representations . 17
1.2 Mathematical Morphology . 18

1.2.1 Quick Review . 18
1.2.2 Level Sets, Contrast Change, Level Lines 19
1.2.3 Reconstruction . 19

1.3 Image and its Topology . 20
1.3.1 Topological descriptions of images 20
1.3.2 Topology of morphological representations 21

2 Tree of Shapes as an Image Representation 25
2.1 Motivation . 25
2.2 Basic definitions . 26

2.2.1 Framework . 26
2.2.2 From level sets to their components 27
2.2.3 Beyond components of level sets . 29

2.3 Inclusion Tree of Shapes . 32
2.3.1 Axiomatic definition of saturation, holes and shapes 32
2.3.2 Saturation of complement . 33
2.3.3 Properties of saturation . 34
2.3.4 Decomposition of an image into shapes 39
2.3.5 Unicoherent spaces . 42

2.4 Applications . 43
2.4.1 Image defined on Rn . 44
2.4.2 Image defined on a bounded subset of Rn 45

7 Light version: some figures are not present

8 CONTENTS

2.5 Reconstruction . 50

2.5.1 Framework . 50

2.5.2 Direct reconstruction . 53

2.5.3 Indirect reconstruction . 58

3 Fast Level Set Transform 61

3.1 Interest of the algorithm . 61

3.2 Continuous vs. Discrete Images . 61

3.2.1 Generalities . 61

3.2.2 Our interpolation model . 62

3.2.3 Consequence on connectedness . 63

3.2.4 Shapes in digital images . 64

3.3 The FLST . 73

3.3.1 Input and Output of the FLST . 74

3.3.2 Description of the algorithm . 75

3.3.3 Analysis and proof of correctness of the FLST 85

3.3.4 Complexity . 91

3.4 Taking advantage of the tree structure . 97

3.4.1 Storage of pixels of the digital shapes 97

3.4.2 Computation of additive shape characteristics 101

3.5 Extensions . 102

3.5.1 Changing connectedness . 102

3.5.2 Higher dimension . 103

4 Applications to Some Morphological Filters 105

4.1 Morphological Filters . 105

4.2 Grain Filter . 107

4.2.1 Description . 108

4.2.2 Link between set operator and function operator 110

4.2.3 Properties . 115

4.2.4 Experiments . 124

4.3 Adaptive Quantization . 125

4.3.1 Description . 125

4.3.2 Gradations . 133

4.3.3 Removal of a node . 135

4.3.4 Experiments . 137

CONTENTS 9

II Image Registration 143

5 Introduction 145
5.1 Generalities . 145
5.2 Correlation methods . 146
5.3 Features matching . 147
5.4 Overview of the method . 148

6 Contrast Invariant Image Registration 149
6.1 Correspondences . 149

6.1.1 Choice of features . 149
6.1.2 Characteristics . 149
6.1.3 Finding correspondences . 152

6.2 Votes . 152
6.3 Accuracy . 154
6.4 Complexity . 155
6.5 Extensions . 156

6.5.1 Reducing the number of correspondences 156
6.5.2 Other global displacements . 161
6.5.3 Using the inclusion information . 161
6.5.4 Dealing with occlusions . 162

7 Experiments of image registration 165
7.1 Pose estimation . 165

7.1.1 What time is it? . 165
7.1.2 Another watch experiment . 171

7.2 Similarity . 178
7.3 Accuracy . 178

8 Conclusion 185
8.1 Strong points of this thesis . 185
8.2 Possible extensions . 185
8.3 Open issues . 186

Light version: some figures are not present

10 CONTENTS

Light version: some figures are not present

Notations

Symbol Page Signification

X A set with an associated topology, genrally R2, Rn or
a subset

P(X) Set of parts of X
◦
A Interior of set A

Ā Closure of set A

∂A Topological boundary of set A

λ, µ Gray levels (real numbers)
X≥λ u or [u ≥ λ] 19 Superior level set of value λ, set of points x ∈ X such

that u(x) ≥ λ

X<µ u or [u < µ] 19 Inferior level set of value µ, set of points x ∈ X such
that u(x) < µ

g 19 A contrast change, that is, a nondecreasing function
(maybe increasing) from R to R and continuous (or
upper semicontinuous)

cc(A), cc(A,x) A connected component of set A, the connected com-
ponent of set A containing x (or ∅ if x 6∈ A)

sat 32 A saturation operator (see Definition 2.6)
ExtA 32 Exterior of set A (notion linked to saturation)
HA 32 Set of holes of set A (notion linked to saturation)

(λ, A) 50 A level-shape, that is, a gray level λ associated to the
saturation of a connected component of the level set
(inferior or superior) of value λ

LSx 50 Set of level-shapes (λ, A) such that x ∈ A

LS≥x 50 Set of level-shapes (λ, A) ∈ LSx, A being a connected
component of the superior level set [u ≥ λ]

LS<
x 50 Set of level-shapes (λ, A) ∈ LSx, A being a connected

component of the inferior level set [u < λ]
4 52 Order relation among level-shapes
ud 62 A Discrete image, a map from a discrete set Ωd of the

plane to R
11 Light version: some figures are not present

12 CONTENTS

Symbol Page Signification

|P | 64 P being a pixel (an element of Ωd), the open pixel
containing P , an open square of side 1 containing P

Tt 109 Set grain filter at scale t

Tt 109 Function grain filter at scale t

Bt 109 Set of structuring elements of the grain filter
mi j 150 Moments of a plane set
µi j 150 Centered moments of a plane set

Light version: some figures are not present

Overview of the thesis

0.1 General considerations

From the observation that our perception of images is roughly insensitive to contrast
change, and that we are able to recognize without difficulty an object under different
lightnings, the need for contrast invariance in machine vision algorithms is acknowledged.
Therefore its methods must deal with features invariant under a contrast change. The
level sets of the image, the basic features manipulated in the mathematical morphology
framework, present this property. Whereas changing the contrast in an image can modify
the level at which an object is seen, the corresponding level set remains present in the im-
age, simply at another level. Mathematical morphology is more concerned with geometric
tools than with gray levels.

To this need for contrast invariance, two others have to be added: the features must be
as local as possible, and neither dark objects nor light objects should have the preference
over the other. These requirements are easily satisfied: the former one by considering
connected components of level sets instead as their globality, the latter one by using as
well upper level sets (sets of pixels of gray level larger than a threshold) as lower level
sets (sets of pixels of gray level less than a threshold). The relation between upper level
sets (as well as lower sets) or their components is evident to establish: they are monotone,
which translates to a tree structure for the components. The attractive property of these
features is that they represent exactly the image. Their datum is equivalent to the one of
the image itself, on the contrary for example to representations based on computed edges.
However, they give two representations for the same image: the upper level sets favor light
objects, while the lower level sets select dark objects. The goal of the first part of this
thesis is to merge both into one structure, which appears to be a tree driven by inclusion.
For this, the simple idea to remove some connected components that are considered as less
useful and to fill the holes of remaining ones is used. Two morphological filters derived
from this representation are proposed. Since they are based on this representation, they
present the attractive property to be invariant by an inversion of the contrast: they are
called selfdual in the vocabulary of mathematical morphology.

This representation is then used in the second part to address one of the most basic

13 Light version: some figures are not present

14 CONTENTS

problems in multi-image processing: the registration. Whereas numerous methods were
proposed to this problem since at least 20 years, no one can pretend to solve the problem:
most of them are contrast sensitive (in particular correlation), and they are fooled when
secondary motions are also present. Our method is based on the basic elements of our
representation, called shapes, which are thus reliable features to perform the registration.
Shapes in each image are looked for in the other image, establishing correspondences
between shapes of one image and of the other image. Then a procedure of vote of the
correspondences selects the dominant motion. This method is shown to yield subpixel
accuracy in quite unfavorable conditions.

0.2 Plan

The first chapter reminds the different representations of the topology of image that can
be found in the literature on the subject and Chapter 2 exposes the conditions of the
existence of the tree of shapes for continuous domain images. An axiomatic definition of
the notion of hole is proposed and shown to permit to associate an inclusion tree of shapes
to an image. The conditions of the reconstruction of the image from its tree are also
examined. This justifies the term “representation” in a general framework. This chapter
is mainly mathematical, the main tool being topology, and in particular the notion of
connectedness is intensively used.

The third chapter applies the general results of Chapter 2 to digital discrete images,
and presents an algorithm, the Fast Level Set Transform (FLST for short), to extract
the inclusion tree from an image, and also how to reconstruct the image from the tree.
Whereas the algorithm in itself is complex, its output, the inclusion tree of shapes, is very
easy to manipulate.

Chapter 4 presents two morphological filters based on the tree. Their properties are
examined, the prominent ones being their invariance under an affine transform and their
selfduality. These properties are mathematically proved, making them attractive in image
processing.

The second part of this thesis deals with registration of two images, when a global
motion depending on few parameters exist, for example similarity. Chapter 5 introduces
the subject and Chapter 6 describes the method we propose. This part is more oriented
toward applications.

Finally, Chapter 7 shows the results of some experiments of registration, in realistic
situations. The subpixel accuracy is demonstrated even when the conditions are odd.

Light version: some figures are not present

Part I

Contrast Invariant Image

Representation

15 Light version: some figures are not present

Chapter 1

Introduction

1.1 Different Image Representations

Image representations can be different depending on their purpose. The raw information,
that is the values of the samples, or pixels, is a too low level of representation, and the
image must be described with more elaborate models.

For a deblurring, restoration, denoising purpose, the representations based on the
Fourier transform are generally the best since they rely on the generation process of the
image (Shannon theory), and/or on the frequency models of the degradation as for additive
noise, or spurious convolution kernel. However, the Fourier transform is purely frequency-
oriented and does not give directly any space information. The wavelet theory [54, 42],
achieves a localization of the frequencies, and, due to the linear structure of the images at
their smallest scales, the wavelet representation is to date the best representation of the
image for compression purpose.

Nevertheless, from the image analysis point of view, frequency based representations
do not give the adequate information. Indeed, the Fourier representation is nonlocal and
the wavelet representation is sensitive to a translation, rotation or scaling in the image,
disabling the recognition of objects independently of the viewpoint. Moreover, both of
these representations have quantized observation scales.

Scale-space and edge detection theories propose to represent the images by some sig-
nificant edges, where edges are defined suitably. The algorithms proceed in general in two
steps (which sometimes can be merged): first the images are (linearly or not) smoothed
[3, 86] and secondly an edge detector is applied to the smoothed image. Edges are detect-
ed based on the second order derivatives of the image. The earliest definition of edges is
due to Marr and Hildreth [47] and a variant was later proposed by Canny [8]. The scale
represents the amount of smoothing prior to edge detection. The first scale-space based
on edges is the zero-crossing of the Laplacian across the gaussian pyramid, that is the
smoothing is a convolution with a gaussian kernel of varying variance. According to Marr,

17 Light version: some figures are not present

18 CHAPTER 1. INTRODUCTION

those zero-crossings represent the “raw primal sketch” of the image, that is the basis on
which further vision algorithms should rely, see Marr [46] and Hummel [29].

In general, edges extraction can be formulated as a variational problem, see Nitzberg
and Mumford [63], Morel and Solimini [60]. The image is approximated by a function
that stands in a class of functions for which edges are properly defined: A famous example
of such a class is the family of piecewise constant images having a bounded discontinuity
length; in this class, the discontinuities lines of the approximating function are interpreted
as the edges, see Mumford and Shah [61]. Then, a balance between how close and how
complex the approximation is (e.g., with the previous example, the complexity can be the
length of the discontinuity boundary), defines a scaled representation of the image.

Despite the generality of the variational approach, it suffers from the fact that there is
no theory that says what the model should be. These representations by the edges have two
major drawbacks that have been discussed, see Koenderink [30], Witkin [93] and Mallat
[42], but not solved within the scale-space theory. First, the geometric representation by
the edges is incomplete: it does not allow a full reconstruction of the image, therefore some
information has been lost in the process of edge detection. Secondly, the decomposition
in scales yields a redundant representation.

Another problem with these approaches is linked to the fact that the image gray level
is not an absolute data, since in many cases the contrast is camera dependent, and the
optics of the camera is generally unknown, and in all cases hard to measure. This problem
can be avoided by working in the morphological framework.

1.2 Mathematical Morphology

1.2.1 Quick Review

In natural images, the contrast depends on the type of camera, on the digitization process,
due to the gray level quantization, to the lightning... Despite this multiplicity of factors
changing the contrast, the perception of the image must remain identical, independent of
the screen on which it is displayed. In other words, the contrast information is secondary
relatively to the geometric information, and useful mainly for visual convenience.

The invariance under change of contrast has been first stated as a Gestalt principle by
Wertheimer [92].

Matheron [50] and after him Serra [83, 84] propose a “morphological” representation
of the images by their level sets. It yields a complete, contrast invariant representation
of the image, independent on any parameter. A variant of this representation is proposed
by Caselles et al. in [11], by considering the boundary of these sets, that is the level lines,
forming the topographic map.

Light version: some figures are not present

1.2. MATHEMATICAL MORPHOLOGY 19

1.2.2 Level Sets, Contrast Change, Level Lines

A (gray level) image is represented by a function u from a set X to R. The most basic
elements of mathematical morphology are the level sets. We call superior level set X≥λ u

of value λ and inferior level set X<µ u of value µ the subsets of X defined by the formulae:

X≥λ u = {x ∈ X, u(x) ≥ λ} and X<µ u = {x ∈ X, u(x) < µ}. (1.1)

The convention to take strict inequality for lower level sets and large inequality for upper
level sets is to get consistency results between them, i.e., X \ X≥λ u = X<λ u. Whereas
it is usually of minor importance because we do not mix upper and lower level sets, it
becomes fundamental when we deal with both simultaneously.

A global change of contrast is modeled by a function g : R → R that is non decreasing.
Sometimes, g needs to be strictly non decreasing, in which case we talk of a strict change
of contrast. The function v is deduced from u by the contrast change g if v = g ◦ u.
Mathematical morphology is concerned with characteristics from images that are invariant
relative to a contrast change. That means that if v = g ◦ u, the characteristics of v and u

should be the same. In other words, the relation

uR v ⇔ ∃ g strictly increasing s.t. v = g ◦ u (1.2)

is an equivalence relation, and morphological characteristics do not depend on the partic-
ular representative in an equivalence class, whereas morphological operators act on these
equivalence classes.

The family of level sets is a particular morphological characteristic of an image since

X<g(λ) g ◦ u = X<λ u and X≥g(λ) g ◦ u = X≥λ u (1.3)

and therefore the family of lower level sets X< u does not depend on g and the family of
upper level sets X≥ u neither. Only the indices of the level sets change.

Furthermore, topological characteristics extracted from level sets are also morpholog-
ical. A particular case is the connected components of the boundaries of level sets, which
are called level lines. Another case is taking the connected components of level sets, which
are used in the following chapter to construct “shapes”.

1.2.3 Reconstruction

Our confidence in the interest of level sets comes also from the fact that they are a
representation of the image. From the lower level sets of an image u, we can recover u by
the formula:

∀x, u(x) = inf
{

λ : x ∈ X<λ u
}

(1.4)

Light version: some figures are not present

20 CHAPTER 1. INTRODUCTION

and from the upper level sets by the formula:

∀x, u(x) = sup
{

λ : x ∈ X≥λ u
}

. (1.5)

In the last case, thanks to the non strict inequality, the supremum is actually a maximum,
since x ∈ X≥u(x) u.

Moreover, from a family of sets (Xλ)λ∈R, we can reconstruct an image by the formula

∀x ∈ X, u(x) = sup {λ : x ∈ Xλ} . (1.6)

The reconstruction is exact, in the sense that the upper level sets of u are precisely the
Xλ, provided that: ⋂

λ∈R
Xλ = ∅; (1.7)⋃

λ∈R
Xλ = X; (1.7′)

∀λ ∈ R,
⋂
µ<λ

Xµ = Xλ. (1.7′′)

The first two conditions ensure that the values taken by u are finite, the third condition
implying that the Xλ are non increasing and expressing a semicontinuity condition on the
Xλ. These results are shown by Guichard and Morel in [26]. However, they show that
an approximate reconstruction can be performed under weaker hypotheses: If conditions
(1.7)-(1.7′′) are replaced by the weaker one

λ > µ ⇒ Xλ ⊂ Xµ,

that is the non increasingness of the family (Xλ)λ∈R, then X≥λ u = Xλ almost everywhere,
and for almost every λ (relatively to Lebesgue measure).

1.3 Image and its Topology

1.3.1 Topological descriptions of images

Once the image is segmented, one way or another, the resulting topology must be de-
scribed. The usual notion of segmentation is a partition of the image into connected
regions and the relations between these regions are meaningful. The first idea is to encode
the adjacency relations: we need to know when two regions have a common boundary.
The classical way to represent this relation is through a graph, the Region Adjacency
Graph (RAG): each region is represented as a vertex in the graph and when two regions
are adjacent, an edge links the corresponding vertices, see Rosenfeld [69]. Nevertheless,

Light version: some figures are not present

1.3. IMAGE AND ITS TOPOLOGY 21

adjacency is not the only meaningful relation between regions. For example, if two regions
are adjacent, the number of connected components of their boundary is not encoded. The
solution to this problem would be to add the corresponding number of edges between the
two vertices, yielding then a multigraph. More annoying is the problem that the knowl-
edge that a region is a hole inside another region is not contained in the (multi) graph.
Gangnet et al. [25], recognizing that these data are missing, propose to add the inclusion
structure of contours to the graphs. However, this represents the topology of the image
in two graphs, making it uneasy to manipulate. Observing the difficulty to describe the
relations between regions in terms of pixels only, Kovalesky in [33] proposes a cell-list rep-
resentation, adding frontiers between regions as 1-dimensional elements and the junction
points of regions of these frontiers as 0-dimensional elements. However, his structure is
not a graph, and does not encode more data than the RAG.

Following the direction opened by Kovalesky, Fiorio in [21] uses the same elements to
construct its representation as a combinatorial map (see Lienhardt [38]) and exposes an
algorithm of linear complexity to construct his representation, the Frontiers Topological
Graph. Fiorio emphasizes the fact that the representation must be consistent with the
usual topology of the plane, and that it must introduce the minimum number of elements
of non maximal dimension to this purpose. In [22], he generalizes to higher dimensions this
representation, whereas in [23], he explains how to manipulate the Frontiers Topological
Graph, in particular how to update the structure when two regions are merged and how
to extract the Frontiers Topological Graph of a subimage, provided the subimage does not
cut regions. Unfortunately, these basic operations are not obvious, coming from the fact
that the combinatorial map is a fairly complex representation.

1.3.2 Topology of morphological representations

All these topological representations are based on a segmentation of the image understood
as a partition into connected regions. But the basic elements of mathematical morphology,
the level sets, do not compose a partition of the image; instead, they are hierarchical,
because they are ordered. When talking about whole level sets, this order, the inclusion
relation, is total, yielding a very elementary structure, an ordered list. However, it lacks an
important feature of the above representations, the locality, or the fact that the atoms of
the representation (the level sets) are not connected. Hence comes the need for considering
instead the connected components of the level sets.

A fruitful approach is proposed by Ballester, Caselles and Morel in [5], where the atoms
are some parts of the connected components of bilevel sets, that is points whose values1

are comprised between two given thresholds. They are chosen so that when the thresholds
are changed in a manner to have an included bilevel, the subpart of the atom remains

1Actually, not the values at the points but the interval yielded by the inf and sup limits of the values
at each point.

Light version: some figures are not present

22 CHAPTER 1. INTRODUCTION

connected. These atoms are called the maximal monotone sections, and are invariant with
respect to contrast change. Their study comes from a successful shape preserving local
contrast enhancement algorithm proposed by Caselles et al. in [12] and [13]. However, the
relations between these structures are not totally studied, and their efficiency in terms of
compactness of the representation remains to be demonstrated.

Cox and Karron [16] explore the structure of the family of connected components of
upper level sets in a 3-D image for purposes of coding and visualization of 3-D data. They
show that the image can be described as a discrete structure, the tree of criticalities.
They call it the Digital Morse Theory, because it is analogous to the Morse theory for
continuously defined functions: a Morse function, that is a twice continuously differentiable
function, in which the Hessian matrix is non degenerate at critical points, can be described
by a tree of criticalities (see Milnor [55]). From discrete data, a three-dimensional array
of gray levels, they define the continuous interpolated functions which are topologically
consistent with the discrete data and show that they share the same tree of criticalities.
Whereas they remark that using the discrete notions of connectedness (there are two: 4-
and 8-connectedness in 2-D, 6- and 26-connectedness in 3-D) without reference to the
interpolated function can yield inconsistencies when we take the opposite of the image,
they do not push this remark to its natural conclusion: upper level sets are not sufficient
to describe topologically the image, because they are adapted to light objects, but the
dark objects are not well represented in the digital Morse tree.

In a study on numerical functions defined on a rectangle of R2, published in 1950, Kro-
nrod [34] avoids this drawback. Indeed, the atoms in his work are connected components
of isolevel sets, which are continua. Given such a component K and a neighborhood U of
K, if we call open set the family of the connected components of isolevel sets contained
in U , the family of all these sets forms a topology on the set of connected components
of isolevel sets of the image. The natural map, that with a point of the rectangle as-
sociates the connected component of isolevel set containing it, is continuous. Since the
square is connected, locally connected and compact, so is the topological space of con-
nected components of isolevel sets. He shows furthermore that no subset of this space is
homeomorphic to the circle S1, concluding that this space is actually a tree, in the topo-
logical sense. Moreover, he shows that this tree has an at most countable number of leaves
and of ramification points, and that the leaves are connected components of isolevel sets
not separating the rectangle (they are some regional extrema, but also what he calls con-
centric singularities), whereas ramification points are those separating the rectangle in at
least three parts. He calls this tree the one-dimensional tree of the function and describes
the functions which are in the same family as a given one: they are obtained by merging
some parts of the tree. In many respects, this construction is remarkable: the family of
connected components of isolevel sets is globally invariant under a contrast change, but
also under an inversion of contrast (taking the negative of the function), which was the
feature lacking to the digital Morse tree. However, from the image representation point of

Light version: some figures are not present

1.3. IMAGE AND ITS TOPOLOGY 23

view it suffers from two drawbacks: isolevel sets are sparse and do not represent an object
in the image and the tree is not ordered, meaning that there is no actual root. The first
drawback is not related to Kronrod work, since his concern was not image analysis, but
rather the study of functions, but the second he solves only partially, although he does not
emphasize the problem: If we fix a point of the square, the components of isolevel sets not
containing this point can be ordered relative to this point. What this amounts to do is to
isolate some connected component of isolevel set (the one containing the fixed point), and
order the other ones relatively to it, giving a rooted tree. From the image analysis point
of view, such a construction is not pertinent, since the point is chosen arbitrarily.

In many respects our work is closely related to Kronrod’s one. We do not deal with
isolevel sets but with connected components of upper and lower level sets, whose holes we
fill. The notion of hole is not without flexibility, and we develop an axiomatic approach of
the adequate definitions of hole. The fact we fill the holes permits to mix the upper and
lower level sets in the same structure, namely a tree, which is oriented by inclusion. In this
manner, the tree describes in a straightforward manner the topology of the image. This
is related to Kronrod’s article in the sense that the boundary of our atoms are (connected
parts of) connected components of isolevel sets (at least for a continuous function), and
that filling the holes of a connected component of upper level set is exactly the same as
filling the holes of its boundary (see Proposition 2.18 in the next chapter). In this manner,
we precise what is the interior of a connected component of isolevel set, this interior being
defined with no arbitrary choice, and this orders the atoms by inclusion. This keeps the
advantages of Kronrod’s tree, namely contrast and negative invariance properties, while
being adapted to image analysis, because most objects in the image are likely to be formed
of atoms of our representation. Moreover, we gain generality because the results are valid
for a semicontinuous image.

In the next chapter, we expose the construction of the tree, the main tool being the
topology. The following chapter translates the theoretical results to the discrete case and
explains a fast algorithm allowing to get the tree from an image, which tree is sufficient
to reconstruct the image and not redundant. For these reasons, we say that this tree is a
strong representation of the topology of the image. Finally, we show that the tree can be
used to analyze and compute the effect of some recent and new morphological filters.

Light version: some figures are not present

24 CHAPTER 1. INTRODUCTION

Light version: some figures are not present

Chapter 2

Tree of Shapes as an Image

Representation

2.1 Motivation

In this chapter, we show that, under certain topological conditions concerning the images
and their set of definition, the “shapes” have a tree structure. This notion of tree is not
the classical one, in the sense that it is not a discrete structure, since it can have an
infinite (and possibly not even countable) number of nodes, yet it is consistent with it:
two arbitrary nodes are connected, and there is no loop.

The shapes of an image are built from the connected components of level sets. It is
well known that connected components of level sets have a tree structure. The difference
here is that we consider simultaneously superior and inferior level sets and the shapes
constructed from them are stored in one structure, without redundancy. This may seem
paradoxic, since the datum of the connected components of lower level sets, or the datum
of the connected components of upper level sets, are each sufficient to reconstruct the
image. The explanation of this paradox is that the shapes are not constructed from all
those connected components, but from a selection of them, this selection being of course
independent of the contrast. Moreover, this selection is consistent with what we expect
to be “objects” in the image and discards the background. We do not pretend to solve
the foreground-background ambiguity in general, but this ambiguity appearing only for
regions meeting the frame of the image, most of the time the good choice is made.

The tree of shapes is complete and without redundancy. What these properties mean
is that the datum of the shapes is sufficient to reconstruct the image (completeness) and
that it is necessary for this operation (absence of redundancy), in the sense that removing
a part of the tree does not permit to reconstruct the image or yields a different image. In
these respects, the tree of shapes is a representation of the image. Moreover, we believe
this tree is a representation adapted to image analysis, its contrast invariance being not

25 Light version: some figures are not present

26 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

the least of its advantages.
Finally, for discretely defined images, a fast algorithm allows the decomposition, the

reconstruction being trivial. This is exposed in the next chapter.

2.2 Basic definitions

2.2.1 Framework

Unless otherwise defined, X will be any connected topological space. Although it will be a
metric space most of the time, we prefer to prove the results in a more general framework
when possible, so as to highlight the meaningful properties of the space that are used. We
call image an application from X to R. X will sometimes need to be locally connected.
We recall the definition of local connectedness (see [27] and [62, IV.6,Theorem 6.4]):

Definition 2.1 A topological space X is said to be locally connected if the following e-
quivalent properties hold:

1. X has a basis of connected neighborhoods;

2. the connected components of any open set of X are open.

Notice that local connectedness is a property totally independent of the fact that the
topology is metric or not.

The notion of connectedness we use is the classical topological one:

Definition 2.2 (Connectedness) A topological space X is said to be connected if any
partition of X into two closed sets results in one of them being ∅ and the other one X. A
subset of X is said to be connected if it is connected as a topological space (for the induced
topology).

This can also be formulated with partitions into two open sets (it is enough to consider
the complements), or saying that the only open and closed subsets of X are ∅ and X,
or in an alternative formulation: the only subsets of X having ∅ as boundary are ∅ and
X. Other notions of connectedness exist, as for example arc-wise connectedness, or strong
connectedness, but we restrict the discussion to the classical one.

The two most important basic results that are useful are:

– The union of a family of connected subsets of X having a nonempty intersection is
connected.

– If C ⊂ X is connected and C ⊂ D ⊂ C̄, then D is connected.

The first point implies that any topological space X can be partitioned in a family of
maximal connected subsets, and this decomposition is unique. Its elements are called the

Light version: some figures are not present

2.2. BASIC DEFINITIONS 27

Figure 2.1: Comparing the two small gray squares, the eye is not at ease comparing their
gray level. The left small square might appear brighter than the right one, whereas they
have the same brightness.

connected components. The second point implies that if C is connected, C̄ is connected,
and an easy consequence is that the connected components of a set S are closed in S (but
not necessarily open, except when S is locally connected, hence the interest of this notion
of local connectedness).

An image is a map u : X → R; superior and inferior level sets of u are defined as in
(1.1).

It is clear that the family of superior level sets is decreasing, whereas the family of
inferior level sets is increasing:

∀λ ≤ µ, X≥λ u ⊃ X≥µ u, X<λ u ⊂ X<µ u. (2.1)

As explained in Section 1.2, each one of these families is a contrast invariant represen-
tation of an image, allowing to reconstruct the image from Equations (1.4) and (1.5).

2.2.2 From level sets to their components

Whereas contrast invariant, level sets are not compatible enough with our visual perception
to have any hope of representing visual “objects”. It seems true that the eye is the most at
ease in comparing two light intensities (much more than for example in comparing hues),
yet these comparisons do not seem to be global: it is able to isolate from two adjacent
regions the brighter one, but for non adjacent regions, the comparison does not seem to
be reliable (see Figure 2.1).

The consequence is that global comparisons are not meaningful, that is only adjacent
regions should be compared. The information left is in Figure 2.2. The arrows in this
figure represent the relation “brighter than”. This relation is transitive, but observe that
it does not allow to compare the gray levels of the two squares.

Moreover, any homogeneous region appears as one “object”, that is not split by the
eye. This leads us to work with connected components of level sets rather than with the
whole level sets. The fact that two regions are connected components of the same level
set is not a relevant information, we do not compare their gray level. This is the case for

Light version: some figures are not present

28 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

Figure 2.2: The information left from image of Figure 2.1 when only local comparisons
are performed. The arrows represent the order relation “brighter than”.

the small gray squares in Figure 2.1.
Notation: Given a point x in X≥λ u, let us denote by cc([u ≥ λ],x) the connected

component of X≥λ u containing x. By convention, if x 6∈ X≥λ u, cc([u ≥ λ],x) is ∅. A
similar notation applies to cc([u < µ],x).

We derive evidently from Equations (1.4) and (1.5) the reconstruction formulae:

u(x) = inf {µ / cc([u < µ],x) 6= ∅} (2.2)

u(x) = sup {λ / cc([u ≥ λ],x) 6= ∅}. (2.3)

The monotonicity of level sets translates into a tree structure for their connected
components. Since their number need not be finite, we have to define a more general
notion of tree.

Definition 2.3 Let E be a family of sets and 4 a partial order relation in E. We say that
4 induces a tree structure in E if the two conditions hold:

1. ∃R ∈ E , ∀E ∈ E , E 4 R;

2. ∀A, B, C ∈ E,
A 4 B

A 4 C

}
⇒ B and C are comparable.

The first condition expresses the connectedness of the structure, R being the root of
the tree, and the second condition implies that there is no loop, because, given four sets
A, B, C, D ∈ E , the following situation cannot happen:

A ⊂ B ⊂ D

A ⊂ C ⊂ D

B and C not comparable.

A particular case occurs when the relation order is the inclusion of sets, in which case
we talk about an inclusion tree.

Light version: some figures are not present

2.2. BASIC DEFINITIONS 29

With this definition we show the tree structure of connected components of level sets.

Proposition 2.4 Let u be an image. Let A = cc([u ≥ λ],x) (resp. A = cc([u < λ],x))
and B = cc([u ≥ µ],y) (resp. B = cc([u < µ],y)). Suppose that A ∩ B 6= ∅. Then either
A ⊂ B or B ⊂ A.

Proof. Suppose, without losing generality, that λ ≤ µ. Then we have [u ≥ µ] ⊂ [u ≥ λ],
thus B ⊂ [u ≥ λ]. Let z ∈ A∩B, then clearly A = cc([u ≥ λ], z), and since B is connected,
contains z and is contained in [u ≥ λ], we deduce that B ⊂ A.

The case of the connected components of inferior level sets is dealt with in the same
manner. ¤

This implies (and is stronger than) the inclusion tree structure:

Corollary 2.5 For a bounded image u, the set of lower level sets X< u and the set of
upper level sets X≥ u are each inclusion trees.

Proof. The root is the definition set of u. If A, B and C are lower level sets, A ⊂ B and
A ⊂ C, we get A ⊂ B ∩ C, which proves that B ∩ C 6= ∅ and, using Proposition 2.4, that
B and C are comparable for inclusion order. The proof is similar for X≥ u. ¤

2.2.3 Beyond components of level sets

The above simple result only is a small extension of Equation (2.1). Nevertheless, it is a
substantial improvement over these formulas in the sense that it represents more faithfully
the objects in the image. We have got locality, which was one of the main motivations of
this work. In these two trees, we expect to find the meaningful objects perceived by the
eye. In this sense, these trees seem to be useful for image analysis.

The problem with their use is linked to reconstruction. It is acknowledged that the
trees are sufficient information to reconstruct the image they are extracted from, but they
are redundant. Since each tree represents exactly the image, if we want to deal as well
with upper level sets as with lower level sets (which we do), manipulations of these trees
is a problem. For example, the basic operation we would like to do on a tree is to remove
one node. Since the other tree is not linked (except that it represents the same image
initially), it must be extracted again so that it represents again the image of the first tree.
There is no quick solution to this; we have to reconstruct the image from the modified tree
and extract the other tree. This drawback is due to the lack of link between the two trees.
Whereas the inclusion information is encoded for components of the same type of level set
in their tree, there is no such information between components of different types of level

Light version: some figures are not present

30 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

A

2

1

2 0

B

C

D

A B
C

D

F

G

E

E F G

Figure 2.3: Top: an elementary image with three “objects”: two squares and one rectangle.
Left column: the connected components of upper level sets with increasing thresholds
from top to bottom. Right column: the connected components of lower level sets with
decreasing thresholds from top to bottom. Bottom line: the two associated trees, where
arrows represent the relation “contains”. The two squares, which are relevant from an
image analysis point of view, are of different types and therefore appear in different trees,
showing that both trees are of interest. Whereas the square G is included in the rectangle
F , there is no link between D and F .

sets. This is to be expected since such components are not nested, that is we cannot keep
an inclusion tree structure with all components of lower as well as upper level sets.

Figure 2.3 illustrates the fact that both trees can have very different structures. Since
no one should be privileged, the use of their tree structure is a problem. This example
hints at what is lacking in both trees. The link between them is related to the notion of
holes. In this figure, D is a hole in F , and this information is interesting from an image
analysis point of view.

Since each tree represents exactly the image, the datum of both is at the same time
too much (since there is redundancy) and not enough because such relevant information
as the relation of being a “hole” in an object does not appear in these data.

All these problems have a common solution: instead of considering connected com-
ponents of level sets, we work with connected components of level sets whose holes are

Light version: some figures are not present

2.2. BASIC DEFINITIONS 31

2 0

1

A

G

2

D

F

A

D

F
G

Figure 2.4: The shapes based on the elementary image as in Figure 2.4. The component
F of Figure 2.4 becomes full here; D and G do not change since they have no hole, and
all the other components become A, the whole image. The image is represented by a
unique inclusion tree, where upper and lower level sets have equal importance. Notice
that reversing the contrast (negating all gray values) would yield the same tree structure.

filled. This elementary operation yields what we call shapes. The shapes keep the same
properties as connected components of level sets: locality and insensitiveness to contrast
change. The relation between connected components of level sets of different types “is a
hole in” translates in this framework to the relation “is contained in”. Fortunately, this
operation remains consistent with image analysis. Since we live in a world where numerous
objects are “full”, a hole in their projection in an image must be due to occlusion, and
representing such projections without their holes is faithful to the true object.

The redundancy between the two trees is automatically removed. Taking the example
of image of Figure 2.3, the shapes based on components A, B, C and E are the same:
the whole image. The shapes based on D and G are D and G themselves, since these
components have no hole. On the contrary, the component F becomes a full rectangle F ′,
and D, which was a hole in F , is a subset of F ′. As shown in Figure 2.4, the shapes have
an inclusion tree structure.

In the following section, we investigate the conditions under which a continuously
defined image can be represented by a tree of shapes. This will imply the definition of the
notion of hole and of the concept of saturation.

Light version: some figures are not present

32 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

2.3 Inclusion Tree of Shapes

The goal of this section is to show that the shapes extracted from an image have an
inclusion tree structure and to investigate the possibilities of reconstruction of an image
from its shapes. Under these conditions, decomposition of an image into shapes will be a
powerful image representation, well adapted to image analysis.

2.3.1 Axiomatic definition of saturation, holes and shapes

It appears that the main results of this chapter are valid in a large variety of situations.
The definition of holes needs not be totally fixed. This freedom is an advantage, because
it allows to define the shapes in different situations, the two most important ones being
the case of an image defined on Rn and of an image defined of a subset of Rn. The
requirements for the definition of holes are contained below in Definition 2.6.

X will be a connected topological space. We will not restrict ourself to the case of
Rn, because no vector space structure on X is needed, though practical cases happen in
subsets of Rn. We call image an application from X to R.

The following definition exposes the requirements for a saturation operator. The sat-
uration operator is the operator that transforms the connected components of level sets
to “shapes”. This operator fills the holes of the connected components of level sets. That
these conditions are needed will appear later.

Definition 2.6 We say that sat is a saturation operator on X if

sat : P(X) → P(X)

and

1. ∀A ⊂ X, X \ sat(A) is either ∅ or a connected component of X \A;

2. sat is increasing with respect to inclusion of subsets of X;

3. ∀A ⊂ X, sat(X \ sat(A)) = X or ∅;

4. sat ◦ sat = sat.

The definition of a saturation allows us to speak of the holes and of the exterior of a
set:

Definition 2.7 Let sat be a saturation on X and A ⊂ X. We call holes of A (with respect
to sat) the connected components of X \A included in sat(A). We call exterior of A (with
respect to sat) the set X \ sat(A), which we denote by ExtA.

Light version: some figures are not present

2.3. INCLUSION TREE OF SHAPES 33

Notation: We will denote by HA the set of holes of A and ExtA the exterior of A.
Then we have the identity

sat(A) = A ∪
⋃

H∈HA

H

where the unions are disjoint.
Notice that the definitions of holes and exterior depend on the saturation operator

chosen on X. But we will never consider several saturations at the same time, so that the
context will be clear enough to disambiguate these notions.

In Definition 2.6, the condition 1 expresses the fact that we add to A all the connected
components of its complement (named the holes) except possibly one (named the exterior).
Point 2 expresses the fact that the saturation operator is monotone and point 3 is technical,
meaning that we cannot find a non trivial partition of X into two shapes. The last
condition 4 means that once the holes of a set are filled, there remains no hole to be filled.

As written above, the saturation operator transforms connected components of level
sets into shapes:

Definition 2.8 Given an image u, we call shapes of inferior (resp. superior) type the sets

sat(cc([u < µ],x))(resp. sat(cc([u ≥ λ],x))).

Examples of interesting saturation operators will be shown later, but here is a trivial
one: consider the operator that transforms ∅ to either ∅ or X and any other set to X. This
operator destroys all information from the connected components of level sets of an image
and inhibits the reconstruction of an image from its shapes, which is one of our concerns.

2.3.2 Saturation of complement

We derive from the definition the essential properties of a saturation operator on a con-
nected topological space X.

Definition 2.9 We say that A ⊂ X is a simple set when A is connected and sat(A) = A.

In other words, a simple set is a connected set that has no holes, that is a connected fixed
point of sat.

The first result is that a hole in a connected set is a simple set or its saturation is X.

Lemma 2.10 Let A be a connected subset of X and H a hole in A. Then either H is a
simple set or sat(H) = X, the last case implying sat(A) = X.

Proof. H being a connected component of the complement of a connected set (A) in a
connected space, we know that X \H is connected (see [62, IV.3, Theorem 3.3]). So this
set is either a hole of H, in which case sat(H) = X, or the exterior of H, in which case
sat(H) = H.

Light version: some figures are not present

34 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

If sat(H) = X, then since H ⊂ sat(A), the monotonicity of sat yields

X = sat(H) ⊂ sat(sat(A)) = sat(A).

¤

This immediately yields

Corollary 2.11 Let A a connected subset of X and H a hole in A. Then sat(H) ⊂ sat(A).

Remark 2.1. This result, essential for the main theorems we shall prove, is a justification
for the requirement of the fourth axiom of the saturation operator, the idempotency. The
third axiom was also essential.

Lemma 2.10, together with axiom 3 of Definition 2.6, define completely what is the
saturation of a connected component of the complement of a connected set A.

2.3.3 Properties of saturation

We investigate here the topological properties of simple sets, in particular their position
relative to their boundary. It appears that pathological situations are avoided when the
space X is locally connected (see Definition 2.1). Notice that from the idempotency of the
saturation operator (axiom 4 of Definition 2.6), simple sets are the image by the saturation
operator of some sets, in other words, sets that are already saturated. The converse (i.e.,
the saturation of a set is a simple set) would be true at the condition this saturated set is
connected.

Saturation preserves connectedness

First we prove that saturation preserves connectedness. This will be a direct consequence
of the following lemma:

Lemma 2.12 Let X be a connected topological space. Suppose that X is locally connected.
If A ⊂ X, A is connected and H is a connected component of X\A, then A∪H is connected.

Proof. Suppose that A ∪H is not connected. Then A and H being connected, they are
the connected components of A ∪H. Thus A and H are closed in A ∪H, and each one
being the complement of the other one in this space, they are also open. Thus, there is
an open set U in X such that H ⊂ U and U ∩ A = ∅. We can suppose U connected,
otherwise it suffices to take the connected component of U that contains A (there is one
since A is connected), and this component is open since X is locally connected. U is then
connected, included in X \A and contains H. Since H is a connected component of X \A,
this implies H = U , an open set.

Light version: some figures are not present

2.3. INCLUSION TREE OF SHAPES 35

As H is closed in A∪H, H∩A = ∅, and H being connected, H = H. Since ∅ 6= H 6= X,
the fact that H is open and closed is a contradiction with the connectedness of X. ¤

Remark 2.2. This result is very close to Theorem 3.4 in [62, IV,3]: if H is open and
closed in X \A and X is connected (it needs not be locally connected), A∪H is connected.
Lemma 2.12 is not, however, a consequence of this result, since a connected component of
X \ A is not necessarily open in X \ A (even if X is locally connected, because X \ A is
not supposed open).

As announced, this lemma allows us to show the connectedness preserving property of
saturation:

Proposition 2.13 Let X be a connected and locally connected topological space, sat a
saturation operator on X and A ⊂ X a connected set. Then sat(A) is connected.

Proof. It suffices to write
sat(A) =

⋃
H∈HA

(A ∪H),

a union of connected sets (thanks to Lemma 2.12) having a nonempty intersection (A).
sat(A) is then connected. ¤

As a consequence of Proposition 2.13, all properties proved below apply to shapes of
any image defined on X, since shapes are simple sets.

Saturation preserves topology

Next, we prove that saturation preserves topology:

Lemma 2.14 Let X a connected space, sat a saturation on X and A ⊂ X. If A is open,
sat(A) is also open. If X is locally connected and A is closed, then sat(A) is also closed.

Proof. If sat(A) = X, the assertions become trivial, so we will suppose this is not the
case.

X \ sat(A) is a connected component of X \ A, so that it is closed in X \ A, which is
closed provided A is open. Thus X \ sat(A) is closed in X, which proves that sat(A) is
open.

If A is closed, then X \A is open, and X \ sat(A) is a connected component of X \A,
so X \ sat(A) is open (since X is locally connected), proving that sat(A) is closed. ¤

Light version: some figures are not present

36 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

1

0 2

Figure 2.5: For an image that is not upper semicontinuous, a nontrivial shape can be of
inferior and superior type. In this example, the central disk is approximated by a sequence
of decreasing circles at level 2, whereas the gaps between circles are at level 0. This disk
is a connected component of X≥1 u and X<2 u, without holes for the natural saturation
of R2 (see Section 2.4).

Remark 2.3. A direct consequence of Lemma 2.14 is that the only shapes of an upper
semicontinuous image u that are of inferior and superior type are ∅ and X. Indeed, since
connected components of upper (resp. lower) connected components of level sets are closed
(resp. open since X is locally connected), their saturation is also closed (resp. open). Thus
a shape being simultaneously of inferior and superior type would be open and closed, the
connectedness of X implying this shape would be X or ∅. Remark this becomes false when
u is not upper semicontinuous, as shown in Figure 2.5.

Boundary of saturated sets

We now show that the boundary of the saturation of a set A is a subset of the boundary
of A. For this, the following lemma is used (see [35, §44,III,3]):

Lemma 2.15 If A is any subset of a locally connected space X, and {Ai, i ∈ I} are its
connected components, then ⋃

i∈I

∂Ai ⊂ ∂A.

Proof. Let i ∈ I. On one hand, we have:

∂Ai ⊂ Ai ⊂ A.

On the other hand, X \A ⊂ X \A, so that taking the complement of each member we get

A ⊃ X \X \A. (∗)

Light version: some figures are not present

2.3. INCLUSION TREE OF SHAPES 37

Then

(∂Ai) ∩ (X \X \A) ⊂ (∂Ai) ∩A

⊂ Ai ∩A

⊂ Ai,

(∗∗)

the last inclusion coming from the fact that Ai∩A = Ai, expressing that Ai is closed in A,
since it is a connected component of A. Since X\X \A is open and X is locally connected,
its connected components are also open. Thanks to (∗), each connected component of
X \ X \A is contained in a connected component of A. Therefore, X \ X \A being
moreover open, each one of its connected components is contained in the interior of a
connected component of A. Thanks to (∗∗), we get

(∂Ai) ∩ (X \X \A) ⊂
◦
Ai

which implies that (∂Ai) ∩ (X \X \A) = ∅ since (∂Ai) ∩
◦
Ai = ∅, meaning

∂Ai ⊂ X \A.

¤

Remark 2.4. Without additional assumptions, the converse inclusion is false (see however
[35, §44,III,1]). Consider as an example X = R with the usual topology and A = Q. Then
∂A = X whereas the connected components of A are composed of one rational, thus for
each i, Ai = Ai and

⋃
i Ai = A. Nevertheless, if I is finite, the fact that the Ai are

connected components of A implies A =
⋃

i∈I Ai which is sufficient to prove the converse
inclusion.

Proposition 2.16 If X is locally connected and A ⊂ X,

∂sat(A) ⊂ ∂A.

Proof. If sat(A) = X, we get ∂sat(A) = ∅ and the result is trivial. Now suppose that
X \ sat(A) 6= ∅.

∂sat(A) = ∂(X \ sat(A)) and X \ sat(A) is a connected component of X \ A. Thus,
according to Lemma 2.15,

∂(X \ sat(A)) ⊂ ∂(X \A),

meaning ∂sat(A) ⊂ ∂A. ¤

Light version: some figures are not present

38 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

The next important result links the saturation of a set to the saturation of its boundary.
The following simple lemma will be used (see [62, IV,3,Theorem 3.2]):

Lemma 2.17 Let X be a topological space and A ⊂ X be an open connected set. Then A

is a connected component of X \ ∂A.

Proof. Since A is open, A ⊂ X \ ∂A and moreover

A = A ∩ (X \ ∂A)

proving that A is closed in X \ ∂A, and since it is also open in it and connected, it is a
connected component of X \ ∂A. ¤

The above lemma will be used during the proof of the important proposition:

Proposition 2.18 Let X a connected and locally connected topological space and A ⊂ X

such that sat(A) 6= X. Then sat(A) ⊂ sat(∂A), and if A is closed, we get sat(A) =
sat(∂A).

Proof. Let us first show the equality when A is closed. On one hand, we have ∂A ⊂ A,
so that

∂A ⊂ sat(∂A) ⊂ sat(A) = sat(A).

On the other hand, let C be a connected component of
◦
A. Since X is locally connected, C

is open. Applying Lemma 2.17 to C, C is a connected component of X \∂C. With Lemma

2.15, we know that ∂C ⊂ ∂
◦
A, then X \ ∂

◦
A ⊂ X \ ∂C and as it is clear that C ∩ ∂

◦
A = ∅,

it follows that C is a connected component of X \ ∂
◦
A. Since C ⊂ A, sat(C) 6= X, so we

find that C ⊂ sat(∂
◦
A) and since ∂

◦
A ⊂ ∂A we deduce C ⊂ sat(∂A). Finally this yields

◦
A ⊂ sat(∂A)

and therefore A =
◦
A∪ ∂A ⊂ sat(∂A) and by the monotonicity of the saturation operator,

taking the saturation of each member yields sat(A) ⊂ sat(∂A). Now, let us prove the
inequality when A is an arbitrary subset of X such that sat(A) 6= X. We have A ⊂ A, so
that by increasingness of the saturation operator, sat(A) ⊂ sat(A). Since A is closed, if
sat(A) 6= X, we use the equality for closed sets:

sat(A) = sat(∂A)

and as ∂A ⊂ ∂A, it yields sat(A) ⊂ sat(∂A).

Light version: some figures are not present

2.3. INCLUSION TREE OF SHAPES 39

It remains to show the same inequality when sat(A) = X. If in addition sat(∂A) = X,
the result is obvious. Otherwise, Ext ∂A is a connected subset of X \∂A, so that is cannot
intersect both A and X \A.

If Ext ∂A ⊂ A, we get
sat(Ext ∂A) ⊂ sat(A) 6= X

and by the third axiom of Definition 2.6, we get sat(Ext ∂A) = ∅, which is excluded.
Thus Ext ∂A ⊂ X\A, and since it is connected, it is included in a connected component

of X \ A. It cannot be included in a hole H of A for the same reason that it is not in A:
otherwise we would get

sat(Ext ∂A) ⊂ sat(H)

and sat(H) = H according to Lemma 2.10 and therefore sat(Ext ∂A) ⊂ sat(A), which was
proved to be impossible.

The only remaining possibility is that Ext ∂A ⊂ ExtA, which amounts to write
sat(A) ⊂ sat(∂A). ¤

2.3.4 Decomposition of an image into shapes

The above results concerning the properties of the saturation operator are the tools needed
to prove that shapes have an inclusion tree structure. Nevertheless, this requires additional
assumptions on the space X, which, as we will see, are met with Rn.

Our first proposition is the easy part of our general theorem, and does not need further
hypotheses about X. It compares the saturations of connected components of the same
type of level set.

Proposition 2.19 Let X be a connected and locally connected space and u an image
defined on X. Let A and B be two shapes of u of the same type such that A ∩ B 6= ∅.
Then either A ⊂ B or B ⊂ A.

Proof. Suppose that both can be written as superior shapes, A = sat(cc([u ≥ λ],x)) and
B = sat(cc([u ≥ λ′],y)) (the case where both are inferior shapes is symmetric).

1. cc([u ≥ λ′],y) ∩ cc([u ≥ λ],x) 6= ∅. Without loss of generality, suppose for example
λ < λ′. Then, thanks to Proposition 2.4, we get cc([u ≥ λ′],y) ⊂ cc([u ≥ λ],x), and
applying the saturation operator on each member

B = sat(cc([u ≥ λ′],y)) ⊂ sat(cc([u ≥ λ],x)) = A,

which is the announced result.
If this case is not satisfied, that means that cc([u ≥ λ′],y) is in X \ cc([u ≥ λ],x)

and since it is connected, it is either in a hole of cc([u ≥ λ],x) or in the exterior of

Light version: some figures are not present

40 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

cc([u ≥ λ],x). Each of these cases is now examined.
2. cc([u ≥ λ′],y) ⊂ H where H is a hole in cc([u ≥ λ],x). Then by increasingness of

sat, B ⊂ sat(H) and according to Corollary 2.11, sat(H) ⊂ sat(A) = A, thus B ⊂ A.
3. cc([u ≥ λ′],y) ⊂ X \A. Since A ∩B 6= ∅, then A meets a hole H of cc([u ≥ λ′],y),

and since it is connected and included in X \ cc([u ≥ λ′],y), it is contained in H, and we
are back to the preceding case, inverting the roles of A and B. ¤

Then comes the hard part of our theorem. It deals with the comparison of the sat-
urations of connected components of level sets of different types. Notice that it involves
a strong hypothesis on the boundary of the open shape, which explains why additional
hypotheses on X are required, so that this hypothesis is automatically satisfied for all
open shapes. Notice the proposition is formulated in such a way that the two connected
components have one point (x) in common.

Proposition 2.20 Let u be an upper semicontinuous image on X, A = sat(cc([u ≥ λ],x))
and B = sat(cc([u < µ],x)) two shapes of u. Suppose also that ∂B is connected. Then
either A ⊂ B or B ⊂ A.

Proof.
1. Since x ∈ cc([u ≥ λ],x) ∩ cc([u < µ],x), λ ≤ u(x) < µ. Since u is upper semiconin-

uous, cc([u ≥ λ],x) is closed and cc([u < µ],x) is open, and thanks to Lemma 2.14, A is
closed and B is open.

2. By definition, cc([u < µ],x) is a connected component of X<µ u, thus it is closed in
X<µ u, meaning cc([u < µ],x) ∩ X<µ u = cc([u < µ],x), then since cc([u < µ],x) is open,

∂cc([u < µ],x) = cc([u < µ],x) \ cc([u < µ],x)

and therefore

∂cc([u < µ],x) ∩ X<µ u = cc([u < µ],x) ∩ X<µ u \ cc([u < µ],x) = ∅.

Thus ∂cc([u < µ],x) ⊂ X≥µ u ⊂ X≥λ u since λ < µ.
3. Since, thanks to Proposition 2.16, ∂B ⊂ ∂cc([u < µ],x), we also have ∂B ⊂ X≥λ u.
4. If ∂B ∩ A = ∅, since A is connected, we have either A ⊂ B or A ⊂ X \ B, the last

case being excluded since A ∩B 6= ∅.
5. If ∂B ∩ A 6= ∅, ∂B being connected by hypothesis, which we have shown to be in

X≥λ u, it is included in a connected component of X≥λ u, say cc([u ≥ λ],y). If cc([u ≥
λ],y) 6= cc([u ≥ λ],x), then cc([u ≥ λ],y) ∩ cc([u ≥ λ],x) = ∅ and ∂B, being included in
cc([u ≥ λ],y), is in a connected component of X \ cc([u ≥ λ],x), and since it intersects
A, it is included in a hole of cc([u ≥ λ],x). In all cases, we get ∂B ⊂ A. Thanks to

Light version: some figures are not present

2.3. INCLUSION TREE OF SHAPES 41

Proposition 2.18 we get then:

B = sat(B) ⊂ sat(∂B) ⊂ sat(A) = A.

¤

The following lemma deals with the last case: when the connected components of level
sets are disjoint.

Lemma 2.21 Let A and B be two disjoint connected sets of a connected and locally con-
nected topological space. Then sat(A) and sat(B) are either nested or disjoint.

Proof. If sat(A) or sat(B) is X, the result is obvious. Suppose so that A and B have an
exterior. A is included either in the exterior of B or in a hole of B, since it is connected
and included in the complement of B. If it is included in a hole H of B, then since H

is a simple set, we get sat(A) ⊂ H, and finally sat(A) ⊂ sat(B). If A is included in the
exterior of B, then B is included either in the exterior of A or in a hole of A. In the latter
case, the same proof applies and we get sat(B) ⊂ sat(A). In the former case, no hole of
A meets B, so that sat(A) is included in the exterior of B. This means that no hole of B

meets sat(A) and therefore sat(A) ∩ sat(B) = ∅. ¤

The following theorem sums up the three preceding results and is the achievement of
this section.

Theorem 2.22 Let u be an upper semicontinuous image on the connected and locally
connected space X, A and B two shapes of u with connected boundary. Then A and B

are either disjoint or nested.

Proof.
1. If A = sat(cc([u ≥ λ],x)) and B = sat(cc([u ≥ µ],y)).

– If cc([u ≥ λ],x) ∩ cc([u ≥ µ],y) 6= ∅, suppose for example that λ ≤ µ. Then from
Proposition 2.4 we get

cc([u ≥ µ],y) ⊂ cc([u ≥ λ],x) ⊂ A

and since A is a simple set, we get B ⊂ A.

– If cc([u ≥ λ],x)∩cc([u ≥ µ],y) = ∅, then Lemma 2.21 applies and the result follows.

2. If A = sat(cc([u < λ],x)) and B = sat(cc([u < µ],y)), the same proof applies.

Light version: some figures are not present

42 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

3. If A = sat(cc([u ≥ λ],x)) and B = sat(cc([u < µ],y)), if cc([u ≥ λ],x)∩ sat(cc([u <

µ],y)) = ∅, we can apply Lemma 2.21 to cc([u ≥ λ],x) and sat(cc([u < µ],y)) and this is
done. Otherwise, we have cc([u ≥ λ],x) ∩ sat(cc([u < µ],y)) 6= ∅ and if z is in the inter-
section we can rewrite cc([u ≥ λ],x) = cc([u ≥ λ], z) and cc([u < µ],y) = cc([u < µ], z)
and the result comes from Proposition 2.20. ¤

This theorem implies directly the inclusion tree structure of shapes: this can be shown ex-
actly by the same trivial argument that was used to prove Corollary 2.5 from Proposition
2.4.

2.3.5 Unicoherent spaces

As we have seen, the shapes of an image have an inclusion tree structure under some
restrictive condition on u: that its shapes have connected boundary. Actually this can
be ensured from the upper semicontinuity of u if the definition set X is unicoherent. We
recall the definition of a unicoherent space (see [35, §41,X]):

Definition 2.23 A topological space X is said to be unicoherent if it is connected and
whatever connected closed subsets F and F ′ such that X = F ∪ F ′, we have F ∩ F ′ is
connected.

Let us give some examples of unicoherent spaces1. R, and any interval I of R, are
unicoherent. Indeed, a connected subset of X = R or I is an interval. So if X is the union
of two closed intervals, they intersect and their intersection is a closed interval, thus a
connected set. It is harder to prove that Rn and any hypercube of Rn are unicoherent. In
particular, the closure of a Jordan domain2 in Rn is unicoherent, since it is homeomorphic
to a hypercube in Rn.

Concerning spheres, Sn is unicoherent for n ≥ 2.
Here are also some generic examples: a topological tree, that is a locally connected

continuum not containing any simple closed curve, is unicoherent, see Kuratowsky [35,
§46, VI, 1]. Any arc-wise connected subset of a unicoherent locally connected continuum
is unicoherent, see [35, §47,I,9].

Examples of spaces that are connected but not unicoherent, include: a cylinder, a
torus and S1. The circle S1 has even the remarkable property to be discoherent: if it is
decomposed in any union of two proper closed connected sets, their intersection is not
connected.

We show that if X is unicoherent, the shapes have connected boundary:

1Proving that a topological space is unicoherent is usually not an easy task.
2That is, the closure of the bounded connected component of the complement of a subset of Rn home-

omorphic to Sn−1, the sphere of Rn.

Light version: some figures are not present

2.4. APPLICATIONS 43

Proposition 2.24 If X is a unicoherent and locally connected space, sat is a saturation
on X and u is an upper semicontinuous image defined on X, then all shapes of u have a
connected boundary.

Proof. Let A be a shape of u. We know that A is either closed or open. Suppose it
is closed. Then X \ A is connected and therefore X \A is also connected, closed and
X = A ∪X \A. X being unicoherent, we deduce that A ∩X \A = ∂A is connected.

If A is open, X \ A is closed and connected, so is A and since X = A ∪ (X \ A), we
deduce that their intersection, ∂A, is also connected. ¤

We deduce immediately the

Corollary 2.25 In a unicoherent and locally connected space X with a saturation, two
shapes of an upper semicontinuous image defined on X are either disjoint or nested.

Remark 2.5. It is easy to construct an upper semicontinuous image with two nonnested
intersecting shapes if X is not unicoherent. For instance, consider the function

f(θ) = θχ(0,π] + (2θ + π)χ(−π, 0]

for θ ∈ (−π, π] defined on the circle S1, where θ is the angle. A connected component
of [f ≥ π

3] is [π3 , π]. A connected component of [f < 2π
3] is (0, 2π

3). The complement set
of each is connected, they intersect and their union is not S1. From this, it is easy to
construct a saturation operator on S1 such that these are simple sets relatively to this
saturation.

From now on, we will suppose that X is unicoherent and locally connected. Examples
of such spaces include in particular Rn (n ≥ 1) and Sn (the n-dimensional sphere, n ≥ 2).

2.4 Applications

Until now, we have shown that provided some hypotheses on the topological space X are
true, the shapes of a semicontinuous image defined on X have an inclusion tree structure.
But the definition of shapes requires that we have a saturation operator on X. The goal
of this section is to exhibit saturation operators that are relevant to image analysis. We
will do this in the two most important cases for applications: when X = Rn and when X

is a closed Jordan domain in Rn (for example a hypercube), for n ≥ 2.

Light version: some figures are not present

44 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

2.4.1 Image defined on Rn

Here, we will take X = Rn with the usual topology. We define the natural saturation
operator in Rn by

sat : P(Rn) → P(Rn)

A 7→
{

Rn if A is not bounded,

A ∪⋃
t∈T Ht if A is bounded,

(2.4)

where Ht are the bounded connected components of Rn\A. That this is indeed a saturation
operator is shown below in Proposition 2.26. Notice that in some sense this corresponds
to a natural notion of hole. A hole is a bounded connected component of the complement.
For bounded sets, there is only one unbounded connected component of the complement
(understood as the background) and there is no ambiguity. For unbounded sets, there
may be several unbounded connected components of the complement, and we do not try
to remove the ambiguity between foreground and background. We adopt the solution of
defining all connected components of the complement to be holes. This laziness has a
price: We will not be able to reconstruct the image from the shapes. Nevertheless, that is
sufficient for images that are constant in a neighborhood of infinity.

Let us proceed with the proof this is a saturation operator on Rn.

Proposition 2.26 The operator sat defined on Rn by Formula (2.4) is a saturation op-
erator when n ≥ 2.

Proof.
1. Let A ⊂ X. If A is not bounded, X \ sat(A) = ∅. Otherwise, let B be a ball

containing A. Rn \ B is connected since n ≥ 2, so that it is included in a connected
component of Rn \ A, showing that all other connected components of Rn \ A are in B,
thus they are included in sat(A). Finally, Rn \ sat(A) is a connected component of Rn \A,
the unbounded one.

2. Let A ⊂ B ⊂ Rn. If B is not bounded, sat(B) = Rn, so the inclusion is trivial. If B

is bounded, A is also bounded and Rn \B ⊂ Rn \ A, so that the non bounded connected
components of X \B are included in the non bounded connected components of X \A, and
their union, which is X \ sat(B), is included in the union of the non bounded connected
components of X \A, which is X \ sat(A). This yields sat(A) ⊂ sat(B).

3. Let A ⊂ X bounded. As we have seen, Rn \ sat(A) is not bounded, so sat(Rn \
sat(A)) = Rn.

4. Let A ⊂ X. If A is not bounded, sat(A) = Rn and we get sat ◦sat(A) = sat(A) = Rn.
If A is bounded, ExtA = Rn \ sat(A) is not bounded and connected, so that sat ◦sat(A) =
sat(A). ¤

Light version: some figures are not present

2.4. APPLICATIONS 45

Remark 2.6. The only axiom that is not satisfied for n = 1 is the second one. Actually,
the complement of a bounded interval has two connected components.

Gathering the results of Theorem 2.22 and since Rn is unicoherent, we reach our goal:

Corollary 2.27 Let u be an upper semicontinuous image defined on Rn (n ≥ 2). Let A

and B be two shapes of u. Then A and B are either nested or disjoint.

2.4.2 Image defined on a bounded subset of Rn

When the image u is defined only on a bounded subset of Rn, we would like to have
a property similar to Theorem 2.22, where shapes should have an easy interpretation in
terms of image analysis. The idea is that only a part of an image defined on Rn is observed.

The first (bad) solution would be to extend the image u to Rn by an arbitrary val-
ue. The problem is precisely that this value is arbitrary, and different values would give
different trees.

We would like that “objects” totally included in the definition set are described in the
same manner they would be if the whole image on Rn were observed. So that connected
components of level sets not meeting the frame of the definition set are supposed not
to be cut. At this condition, whatever the image u outside the definition set, its holes
are the components of the complement not meeting the frame. For the same reason, the
saturation of a connected set containing the frame is the definition set itself (see Figure
2.6). There remains to deal with the connected components of level sets that meet the
frame without containing it.

The intuitive notion of a hole is that of a connected component of the complement
“smaller” than the exterior. When the definition set is Rn, in some sense a bounded set
is “smaller” than an unbounded set, so that we can define the holes and the exterior in
agreement with the intuition. When u is defined on a bounded set, we quantify this notion
with the help of measure theory. Therefore, we need to suppose that we are provided with
a measure on the definition set.

We need moreover this definition set to be unicoherent. This imposes strong con-
straints. We suppose that X is the closure of a Jordan domain in R2, or more generally in
Rn, i.e., the closure of the interior of a subset of Rn homeomorphic to Sn−1. Then we know
that X is a connected and locally connected subset of Rn (n ≥ 2), and also unicoherent,
for the usual topology induced by Rn. We suppose also that a Borel measure µ is given on
X. Therefore, since X is compact, µ(X) < +∞. The boundary of X as a subset of Rn,
denoted by ∂X, is called the frame of the definition set; it is a connected set (the Jordan
hypersurface).

From these remarks, we define the saturation as follows:

Light version: some figures are not present

46 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

Figure 2.6: Saturation of some sets in a bounded definition set. Left: two sets (dashed) in
their respective image. Right: their saturation (dashed). The top-left set does not meet
the frame of the image. It is saturated as if the image were infinite (whatever the image
outside the definition set, the result is the top-right set). The bottom-left set contains
the frame of the image. It is also saturated as if the image were infinite (whatever the
image outside the definition set, the result would contain the whole definition set, shown
bottom-right). The saturation of a set containing the frame of the image is always the
whole definition set.

Definition 2.28 Let A a measurable subset of X. We define sat(A) by:
A ∪ {H = cc(X \A) : H ∩ ∂X = ∅} if A ∩ ∂X = ∅,
X if ∂X ⊂ A,

X \ {H = cc(X \A) : H ∩ ∂X 6= ∅ and µ(H) > µ(X)/2} if ∅ 6= A ∩ ∂X 6= ∂X.

(2.5)

As Lemma 2.30 will show, the shapes associated to sets in the first two sets are con-
structed from the same rules as if the image were defined on Rn. The new case is concerned
with sets that meet the frame of the image without containing it. The construction of
the associated shape is illustrated in Figure 2.7. That half the area of the image plays
a specific role is justified by the fact that this yields a saturation operator. In particu-
lar, if we had taken as exterior of a set (meeting the frame and not containing it) the
largest connected component of its complement meeting the frame (provided it is unique),
we would not respect the third axiom of Definition 2.6. Indeed, the image defined on
the rectangle [0, 1]2 by u = χx≥1/3 + χx≥2/3 would yield two nonnested and intersecting
shapes, [u < 2] = [0, 2/3]× [0, 1] and [u ≥ 1] = [1/3, 1]× [0, 1].

That the operator sat as defined above is a saturation is shown below. Notice that
this does not comply exactly with Definition 2.6 since we did not define the action of sat
on non measurable subsets. Nevertheless, we will show that we can restrict to measurable
subsets of X for two reasons:

Light version: some figures are not present

2.4. APPLICATIONS 47

Figure 2.7: The construction of the shape associated to a set meeting the frame of the
image but not containing it. This is the case that was not illustrated in Figure 2.6. Left:
the sets. Right: the associated shapes. In the first two cases (two first rows), one connected
component of the complement has a (Lebesgue) measure larger than half the one of the
image, this is the exterior of the set. The other connected components are the holes. In
the third case (third row), no connected component of the complement has a sufficient
measure, they are all considered as holes and the associated shape is the whole image.

Light version: some figures are not present

48 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

– the sets we deal with (in particular connected components of level sets) are measur-
able;

– the saturation of a measurable set remains measurable, so that we can compose
saturation with itself on measurable subsets.

That explains why we continue to talk about a saturation operator: it suffices to replace
P(X) by the µ-measurable subsets of X in Definition 2.6.

The fact that we use a Borel measure yields

Lemma 2.29 If A ⊂ X is measurable, then every connected component of A and of X \A

is measurable.

Proof.
1. If C is a connected component of A, then it is closed in A so that we can write

C = C ∩A, and since C is measurable (because it is closed) and A is also measurable, C

is measurable.
2. Moreover, X \ A is also measurable, and applying the above proof to X \ A, we

deduce that each connected component of X \A is measurable. ¤

The following lemma makes the link with the case of Rn, as studied in the previous
section.

Lemma 2.30 Let A be a measurable subset of X. A is also a subset of Rn, so that we
can define sat(A) as in Formula (2.5) and s̃at(A) as in Formula (2.4).

If ∂X ∩A = ∅ or ∂X ⊂ A, then sat(A) = s̃at(A).

Proof.
1. If ∂X ∩ A = ∅, since ∂X is connected, it is in a connected component E of X \ A,

and all other connected component of X \A is therefore included in sat(A). E ∪ (Rn \X)
is connected, not bounded and in Rn \A, so that it is the exterior of s̃at(A). We have

E ∪ (Rn \X) = Rn \ sat(A) = Rn \ s̃at(A)

and the result is proven.
2. If ∂X ⊂ A, no connected component of X \ A meets ∂X, so that each is included

in sat(A). Therefore, sat(A) = X, and it is clear that s̃at(∂X) is also X. ¤

We are in a position to prove that the sat operator, as defined in 2.28, is indeed a
saturation operator.

Proposition 2.31 The operator sat of Formula (2.5) is a saturation operator on X.

Light version: some figures are not present

2.4. APPLICATIONS 49

Proof.
1. Let A a measurable subset of X such that sat(A) 6= X. The case where A∩∂X = ∅

is obvious: every connected component of X \ sat(A) is a connected component of X \A

meeting ∂X according to Definition 2.28 and since ∂X is bounded, there is only one.
Otherwise, we are in the case where ∅ 6= A ∩ ∂X 6= ∂X. Then X \ sat(A) is composed of
connected components of X \ A of measure strictly larger than µ(X)/2 and since such a
set is measurable, there is only one. If there were at least two, H1 and H2, we would have

µ(X) ≥ µ(X \ sat(A)) ≥ µ(H1 ∪H2) (∗)

and since H1 and H2 are disjoint and measurable (according to Lemma 2.29), we would
get

µ(H1 ∪H2) = µ(H1) + µ(H2) > µ(H),

contradicting inequality (∗).
2. Let A ⊂ B ⊂ X, A and B measurable. If ∂X ⊂ B, sat(B) = X ⊃ sat(A). If

B∩∂X = ∅, we also have A∩∂X = ∅ and thanks to Lemma 2.30, the result sat(A) ⊂ sat(B)
comes from the fact that s̃at is increasing. The remaining possibility is ∅ 6= ∂X ∩B 6= ∂X.
If ∂X ∩A = ∅, X \ sat(A) is the unique connected component of X \A containing ∂X and
this obviously contains X \ sat(B). Otherwise, ∅ 6= ∂X ∩A 6= ∂X, and by monotonicity of
the measure, a connected component of X \sat(B) must meet the frame and be of measure
strictly larger than µ(X)/2, so it is contained in a connected component of X \ sat(A).
This yields sat(A) ⊂ sat(B).

3. Let A measurable such that sat(A) 6= X. If ∂A∩X = ∅, then X\sat(A) is measurable
and contains X \A, so that sat(X \ sat(A)) = X. Otherwise, we have ∅ 6= ∂X ∩A 6= ∂X

and X \sat(A) is also measurable and verifies the same property, but is of measure strictly
larger than µ(X)/2, so that its complement set is of measure strictly less than µ(X)/2, so
is contained in sat(X \ sat(A)). Therefore sat(X \ sat(A)) = X.

4. Let A measurable. If A ∩ ∂X = ∅ or ∂X, we know that sat(sat(A)) = sat(s̃at(A))
and since s̃at(A) is also measurable and we also have s̃at(A) ∩ ∂X = ∅ or ∂X,

sat(sat(A)) = s̃at(s̃at(A)) = s̃at(A) = sat(A).

If ∅ 6= A ∩ ∂X 6= ∂X and sat(A) 6= X, we also get ∅ 6= sat(A) ∩ ∂X 6= ∂X and
µ(X \ sat(A)) > µ(X)/2, so that sat(sat(A))∩ (X \ sat(A)) = ∅, yielding sat(sat(A)) = A.
¤

As in the case of Rn (see 2.4.1), this implies that the shapes (according to the saturation
operator of Definition 2.28) of an upper semicontinuous image defined on X, the closure
of a Jordan domain in Rn (n ≥ 2), have a tree structure.

Light version: some figures are not present

50 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

2.5 Reconstruction

2.5.1 Framework

In Sections 2.3 and 2.4 we have seen under what conditions an (upper semicontinuous)
image can be decomposed into its shapes, with these shapes having a tree structure and we
have given the definition of shapes in two fundamental cases: when X is Rn (n ≥ 2) and
when X is the closure of a Jordan domain in Rn, so in particular in the case of a rectangle
in the plane, which is the more (the only?) interesting case for practical issues. In this
section, the converse question is addressed: given the shapes of an upper semi-continuous
image u, can we reconstruct u? The answer is positive if we add other conditions, which
are automatically met in the case of a rectangle.

More precisely, let X be an unicoherent and locally connected space with a saturation
operator. Suppose that for each λ ∈ R and for each x ∈ X we have the data

(
λ, sat(cc([u ≥

λ],x))
)

and
(
λ, sat(cc([u < λ],x))

)
and nothing else. Are we able to recover the image u

from these pairs? The first obvious answer is that this is not straightforward.
If we consider the trivial saturation which maps each set to X, all images have the

same shapes, so that reconstruction is impossible. This shows that we need an adequate
saturation operator. Even with a non trivial saturation operator, such as the one defined in
the case of R2 in Section 2.4.1, the answer can be negative. Consider the image u = χx≥0;
u is upper semicontinuous whereas all its shapes are R2, as for a constant image.

To avoid such flaws, we will examine the question of reconstruction in the case where
X is the closure of a Jordan domain in Rn or the whole Rn, and u is constant outside
some bounded subset in the latter case.

Definition 2.32 Let us call a level shape some pair (λ, sat(cc([u ≥ λ],x))), where u(x) ≥
λ, or some pair (λ, sat(cc([u < λ],x))), where u(x) < λ.

Remark 2.7. Logically, we shall say it is an upper level shape in the former case and a
lower level shape in the latter case. Notice that the shapes involved in a level shape are
always supposed to be nonempty.

Notation: The family of level shapes containing a point x is denoted by LSx.
A classical theorem of topology, used several times in the following, is due to Zoretti,

see [35, §42,II,5] or [62, IV.5, Theorem 5.3]:

Theorem 2.33 (Zoretti) The intersection of a nonincreasing sequence of continua is a
continuum.

Remark 2.8. Actually, this is a consequence of another result due also to Zoretti: if a
sequence of continua has a nonempty inf limit, their sup limit is a continuum. The inf
limit of a sequence of sets Cn is the set of limit points of sequences of points xn ∈ Cn,
whereas the sup limit is the set of limit points of subsequences of such sequences.

Another important result due to Lindelöf is the following, see [35, §17,I]:

Light version: some figures are not present

2.5. RECONSTRUCTION 51

Theorem 2.34 (Lindelöf) If X is a separable metric space, and (Gi)i∈I (resp. (Fi)i∈I)
is an infinite family of open sets (resp. closed sets), there exists a sequence Gi1 , Gi2 . . .

(resp. Fi1 , Fi2 . . .) such that

∞⋃
n=1

Gin =
⋃
i∈I

Gi (resp.
∞⋂

n=1

Fin =
⋂
i∈I

Fi)

From these two theorems, we derive easily the following corollary (we recall that a mono-
tone family of sets verifies by definition the property that any two of its elements are
nested):

Corollary 2.35 If X is a separable metric space, the intersection of a monotone family
of continua is a continuum.

Proof. If the (Ci)i∈I are continua of common part C, we can extract a sequence C1, C2, . . .

(thanks to Lindelöf theorem) such that C =
⋂∞

i=1 Ci, and replacing Ci by C ′
i =

⋂i
j=1 Ci,

the C ′
i are clearly nonincreasing continua, and their common part is C. Thanks to Zoretti

theorem, C is thus a continuum. ¤

The following lemma plays a fundamental role in the proofs of the reconstruction
theorems we shall expose.

Lemma 2.36 Let x,y ∈ X and λ ∈ R such that

x ∈ sat(cc([u ≥ λ],y)) whereas x 6∈ cc([u ≥ λ],y).

Then

∃z ∈ sat(cc([u ≥ λ],y)) s.t. x ∈ sat(cc([u < λ], z)) ⊂ sat(cc([u ≥ λ],y)).

Similarly, if
x ∈ sat(cc([u < λ],y)) whereas x 6∈ cc([u < λ],y),

then

∃z ∈ sat(cc([u < λ],y)) s.t. x ∈ sat(cc([u ≥ λ], z)) ⊂ sat(cc([u < λ],y)).

Proof.
1. x is in a hole H of cc([u ≥ λ],y). H is open and its boundary is connected since X

is unicoherent.
2. Suppose that

∀z ∈ H,x 6∈ sat(cc([u < λ], z)). (∗)

Light version: some figures are not present

52 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

Notice this implies u(x) ≥ λ.
3. Consider the family of the sets cc([u < λ], z) where z ∈ H and u(z) < λ. These

sets are open and disjoint, so there are at most a countable number of them. The same
property holds for their saturations. Let us enumerate them C1, C2, . . . Let us show that
for each n the set Dn = H \⋃n

i=1 Cn is connected. It is clear that Dn is closed. Let G 6= ∅
an open and closed subset of Dn. We have

∂Dn = ∂H ∪
n⋃

i=1

∂Cn.

and each term of this union is connected. Then if G meets one of the ∂Ci, it contains it.
Consider G′ the union of G and the Ci whose boundary is contained in G. Obviously G′

is open in H. Moreover for such a i, G ∪ Ci = G ∪ Ci and therefore G′ is also closed in
H. By connectedness of H, we deduce G′ = H, yielding G = Dn. This proves that Dn is
connected.

4. If the number of Ci is finite, it proves that H ∩ [u ≥ λ] is connected. If this
number is infinite, the Dn are decreasing continua. By Zoretti theorem, we conclude their
intersection, i.e., H ∩ [u ≥ λ], is also connected.

5. In all cases, since ∂H is in cc([u ≥ λ],y), we deduce that H ∩ [u ≥ λ] is included in
cc([u ≥ λ],y), which is impossible since x is in the former and not in the latter. Therefore
assumption (∗) does not stand.

6. The proof in the second case is easier: if x ∈ sat(cc([u < λ],y)) but not in
cc([u < λ],y), it is in a hole H of cc([u < λ],y), and ∂H is in [u ≥ λ] and connect-
ed, with sat(∂H) = H. It is enough to take as z any point of ∂H. ¤

Intuitively, we shall say that the gray level at a point x is the level of the smallest
shape containing it. Unfortunately, this smallest shape does not always exist, so we will
need to use a limit. For this, we first order the level shapes.

The shapes containing a given point x ∈ X are totally ordered by the relation of
inclusion. Nevertheless, the same shape can be extracted from different gray levels, so we
need to be more precise.

For an x ∈ X, we define the relation 4 in the family of level shapes (λ, S) ∈ LSx such
that S Ã X by:

(λ,A) 4 (µ,B) ⇔
A Ã B or

A = B and

{
λ ≤ µ if A and B are lower shapes

λ ≥ µ if A and B are upper shapes

(2.6)

Remark 2.9. The definition is well posed: the case A = B implies that the shapes are of

Light version: some figures are not present

2.5. RECONSTRUCTION 53

the same type (both upper or both lower), otherwise they would be open and closed and
by hypothesis they are neither ∅ nor X.

Lemma 2.37 4 is a total order relation in the family of level shapes containing a given
point x, whose shape is not X.

Proof. This is very close to a lexicographic order on the pairs, but not exactly, so we
detail the proof.

1. The reflexiveness is included in the definition.
2. If (λ, A) 4 (µ,B) and (µ,B) 4 (λ, A), then trivially A = B and therefore λ = µ.
3. Concerning transitivity, suppose (λ, A) 4 (µ,B) and (µ,B) 4 (ν, C). If A Ã B or

B Ã C, we have A Ã C and therefore (λ, A) 4 (ν, C). Otherwise, A = B = C and if they
are lower (resp. upper) shapes, that means λ ≤ µ ≤ ν (resp. λ ≥ µ ≥ ν). Whatever the
case, (λ, A) 4 (ν, C).

4. Thus, we have an order relation. For any (λ, A) and (µ,B), since A and B contain
x, they are nested. If they are not equal, (λ, A) and (µ,B) are comparable, since the
order is determined by the order of A and B. If A = B and if it is a lower (resp. upper)
shape, then it is not an upper (resp. lower) shape, otherwise it would be open and closed,
contradicting the connectedness of X. Thus (λ, A) and (µ,B) are comparable. ¤

In the remaining part of this chapter, we shall give two methods of reconstruction of
an image from its level shapes. The first one, which we call the direct reconstruction,
is a closed-form formula but is not very easy to handle, because this formula involves a
limit. The second one is called indirect because it reconstructs in fact the level sets of
an image (which in turn allow to reconstruct the image). This second form is easier to
handle, because only algebraic manipulations of sets are used.

2.5.2 Direct reconstruction

Here is our direct reconstruction formula:

Theorem 2.38 Let u be an upper semicontinuous image. For x ∈ X, we have

u(x) = lim
LSx3(λ,S)↘

λ (2.7)

if there is some shape S containing x and strictly included in X.

u(x) = inf
(λ,X)∈LS<

x

λ = max
(λ,X)∈LS≥x

λ (2.8)

Light version: some figures are not present

54 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

if the only shape containing x is X and provided the following requirement is met:

C1, C2 connected components of level set of u, sat(C1) = sat(C2) = X ⇒ C1 ∩ C2 6= ∅.
(2.9)

Remark 2.10. The limit involved in Equation 2.7 needs some explanation. It should be
read as “limit of the level when the level shapes containing x decrease.” Its definition is

lim
LSx3(λ,S)↘

λ = l ∈ R ⇔

∀ε > 0, ∃(λ, S) ∈ LSx, ∀(µ, T) ∈ LSx, (µ, T) 4 (λ, S) ⇒ |l − µ| ≤ ε. (2.10)

In the same manner, we define inf and sup limits:

lim inf
LSx3(λ,S)↘

λ = l ∈ R ⇔

∀ε > 0, ∃(λ, S) ∈ LSx, |l − inf {µ : (µ, T) ∈ LSx, (µ, T) 4 (λ, S)}| ≤ ε. (2.10′)

lim sup
LSx3(λ,S)↘

λ = l ∈ R ⇔

∀ε > 0, ∃(λ, S) ∈ LSx, |l − sup {µ : (µ, T) ∈ LSx, (µ, T) 4 (λ, S)}| ≤ ε. (2.10′′)

and we easily have the classical equivalence:

lim
LSx3(λ,S)↘

λ = l ⇔ lim inf
LSx3(λ,S)↘

λ = lim sup
LSx3(λ,S)↘

λ = l

Notice, however, that contrarily to classical definitions for sequences of real numbers, it is
not clear whether inf and sup limits always exist.

We now prove Theorem 2.38.

Proof.

1. Let x a point such that there is some containing shape S∗ Ã X, of associated level
λ∗.

2. Let us consider the shape S0 = sat(cc([u ≥ u(x)],x)). It is clear that (u(x), S0) ∈
LSx.

3. Let (λ, S) ∈ LSx such that (λ, S) 4 (u(x), S0) if S0 Ã X, or S Ã X if S0 = X. We
claim that λ ≥ u(x), this inequality being strict if S0 = X.

4. If S is a lower shape, we have S Ã S0. Since S = sat(cc([u < λ],y)), if we have
λ ≤ u(x), we deduce that cc([u < λ],y) does not contain x, and thus that x is in one of its
holes, so as cc([u ≥ u(x)],x) and therefore also its saturation, which is impossible. Thus
λ > u(x).

Light version: some figures are not present

2.5. RECONSTRUCTION 55

5. If S is an upper shape, we write S = sat(cc([u ≥ λ],y)). Then if x ∈ cc([u ≥ λ],y),
we have u(x) ≥ λ, in which case cc([u ≥ λ],y) ⊃ cc([u ≥ u(x)],x), implying in fact that
S0 6= X and cc([u ≥ λ],y) = cc([u ≥ u(x)],x). The order relation yields then λ ≥ u(x),
and thus equality. Otherwise x is in a hole of cc([u ≥ λ],y) and since cc([u ≥ u(x)],x) is
not included in this hole, it intersects cc([u ≥ λ],y) so it contains it (strictly), implying
λ > u(x).

6. For ε > 0, let us consider the shape Sε = sat(cc([u < u(x) + ε],x)) and assume
Sε 6= X. Let (λ, S) ∈ LSx such that (λ, S) 4 (u(x) + ε, Sε).

7. Suppose S is an upper shape, S = cc([u ≥ λ],y) 6= X. Then if λ ≥ u(x) + ε,
x 6∈ cc([u ≥ λ],y) and it is in a hole H of this set, implying that cc([u < u(x) + ε],x) is
also in H, and since S 6= X by hypothesis, we have sat(H) = H (see Lemma 2.10), and
Sε ⊂ H Ã S, this is contrary to the assumption that S ⊂ Sε. Thus λ < u(x) + ε.

8. If S = sat(cc([u < λ],y)) is a lower shape, in case S = Sε we must have λ ≤ u(x)+ε.
In case S Ã Sε, we have either x ∈ cc([u < λ],y), in which case λ < u(x) + ε, or x is
in a hole H of cc([u < λ],y), and since cc([u < u(x) + ε],x) 6⊂ H, we get cc([u <

u(x) + ε],x) ∩ cc([u < λ],y) 6= ∅, yielding cc([u < λ],y) ⊂ cc([u < u(x) + ε],x) and thus
λ ≤ u(x) + ε.

9. The above results allow to conclude in the two possible configurations: S0 = X or
S0 Ã X.

10. If S0 = X, we have S∗ Ã X, implying (see above) λ∗ > u(x) and we easily derive

(λ∗, Sλ∗−u(x)) 4 (λ∗, S∗).

Then for any ε > 0, we take ε′ = min(ε, λ∗ − u(x)) and if (λ, S) 4 (u(x) + ε′, Sε′), since
Sε′ Ã X, the above results prove that λ ≤ u(x)+ε′, and since S Ã X, λ > u(x). Therefore
|λ− u(x)| ≤ ε′ ≤ ε, proving Equation (2.7).

11. If S0 Ã X, if furthermore for some ε > 0, we have Sε Ã X, we conclude in the
same manner as in the previous case. Otherwise, let (λ, S) 4 (u(x), S0). This implies
λ ≥ u(x). If S = sat(cc([u < λ],y)) is of lower type, necessarily λ = u(x) and x is in
a hole H of cc([u < λ],y) and therefore cc([u ≥ u(x)],x) ⊂ H Ã S, which contradicts
(λ, S) 4 (u(x), S0). Then S = sat(C) is of upper type, and if λ > u(x), x is in a hole H of
C, and thanks to Lemma 2.36, there is some lower shape S′ at level λ contained in H and
containing x. This implies easily that Sλ−u(x) ⊂ S′ Ã X, contradicting the hypothesis.
In conclusion, (λ, S) 4 (u(x), S0) implies λ = u(x) (and S = S0), proving Equation (2.7),
the infimum being actually reached at (u(x), S0).

12. Now, let x a point whose unique containing shape is X, and we assume that
requirement (2.9) is met. Let λ ≤ u(x). Then C1 = cc([u ≥ λ],x) 6= ∅ and therefore
sat(C1) = X. Owing to condition (2.9), this implies that if C2 is a connected component

Light version: some figures are not present

56 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

of [u < λ], (λ, sat(C2)) 6∈ LS<
x . Thus

u(x) ≤ inf
(λ,X)∈LS<

x

λ.

Conversely, for λn = u(x) + 1
n , cc([u < λn],x) 6= ∅, implying sat(cc([u < λn],x)) = X

and therefore (λn, X) ∈ LS<
x . Taking the limit as n goes to infinity gives the first equality

of (2.8). The second equality follows the same arguments, except that the supremum is
reached, since (u(x), X) ∈ LS≥x . ¤

Remark 2.11. The additional condition to reconstruct the background is not always
satisfied. For the saturation operator we defined on Rn, this is true, because a connected
component of level set whose saturation is Rn contains a neighborhood of infinity. However,
for the saturation operator defined on a bounded subset of Rn, exceptions can occur. This
is the case if one level line of the image meets the border and cuts the image exactly in
halves, for example for the image defined on [0, 1]2 by χ[0,1/2]×[0,1]. However, apart from
these special cases, the condition is satisfied. This condition is to be linked to the axiom
of saturation saying that if C ⊂ X, either C or X \ C has for saturation X. This pushes
to put X as the saturation of certain shapes, whereas the condition above pushes to make
this occurrence tightly controlled. In the design of a saturation operator, this trade-off
is delicate, for example not totally satisfying for the saturation we defined on a bounded
subset of Rn. This would require some refinements for connected components of level
sets meeting the frame, and whose some connected component of the complement is of
area half that of the image. We prefer not to enter into this level of details, because this
concerns only a very particular family of images.

Let us give some examples concerning the reconstruction. It is clear that if x be-
longs to a regional maximum of u, that is all points of the connected component of
isolevel set containing x are local maxima, the limit is in fact attained. The level shape
(u(x), sat(cc([u ≥ u(x)],x))) is less or equal than any other level shape of LSx. On the
contrary, due to the strict inequality in the definition of lower level sets, if there is a lower
level shape (λ, S) less or equal than any other upper level shape containing x, the limit
is not attained. Indeed, that implies u(x) < λ. This is in particular the case when x is a
local minimum.

These two cases are easy to deal with, because in the “minimization” of the level shapes
containing x, monotone levels are involved: There is a level shape (λ0, S0) such that

(µ, T) 4 (λ, S) 4 (λ0, S0) ⇒ µ ≤ λ (resp. µ ≥ λ).

Light version: some figures are not present

2.5. RECONSTRUCTION 57

Figure 2.8: The “minimization” of level shapes containing a given point can involve both
types of level shapes. For the radial image u(y) = f(‖x‖) where the graph of the real
function f is shown here, whatever the level shape containing the origin O, there is a level
shape of the other type that is strictly less relatively to the order relation 4. f is defined
in Formula (2.11). It can be easily verified that f is upper semicontinuous (and therefore
also u).

A more complex case, where the two types of level shapes are involved, is illustrated in
Figure 2.8. This figure shows the graph of the numerical function defined by:

f(x) =

0 for |x| ≤ 1 or |x| > 4;

|x| − 1 for 1 ≤ |x| ≤ 4 and |x| 6∈ 1 + {1, 1/2 · · · 1/n · · · };
2(|x| − 1) for |x| ∈ 1 + {1, 1/2 · · · 1/n · · · }.

(2.11)

The radial function u(x) = f(‖x‖) is upper semicontinuous (since f is itself upper semi-
continuous). A minimizing sequence of level shapes containing the origin O is given by
(LSn)n∈N with

LS2n = (2/n, sat(cc([u ≥ 2/n], (1 + 1/n, 0))))

LS2n+1 = (2/(n + 1), sat(cc([u < 2/(n + 1)], (1 + 1/n + 1/(2n(n + 1)), 0)))) .

This is a decreasing sequence of level shapes, of alternate types, and it is clear that
whatever the level shape associated to the origin, there is a n such that LSn is strictly less
than this level shape, and of a different type.

Remark 2.12. Even for continuous functions u, this complex case happens. For instance,
we can slightly modify f in the example above to be linear in the intervals [1+ 1

n−εn, 1+ 1
n]

and [1 + 1
n , 1 + 1

n + εn], provided (εn) is a sequence verifying

1 +
1

n + 1
+ εn+1 < 1 +

1
n
− εn.

Light version: some figures are not present

58 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

2.5.3 Indirect reconstruction

The problem of Formula (2.7) is that it involves an infinite number of level shapes, maybe
not even countable. This difficulty comes mainly from the fact that all level shapes (con-
taining a given point x) are taken into account. This can be avoided if we consider only
shapes extracted from a fixed level set: in that case, we show that the datum of the level
set or of its shapes is equivalent. This gives a two-step reconstruction of the image: re-
construct the level sets from the associated level shapes, then apply Formula (1.5). This
section explains how to reconstruct a level set from its associated level shapes.

For a level λ ∈ R and a point x ∈ X, we note:

Fλ,x =
{
F closed ⊂ X : (λ, F) ∈ LSx

}
and

Gλ,x =
{
G open ⊂ X : (λ,G) ∈ LSx

}
.

The union of both sets is the family of the shapes at level λ containing x, noted LSλ,x.
The result allowing an easy reconstruction of the level set λ of u from the LSλ,x is the

following:

Theorem 2.39 The family of sets LSλ,x is closed by intersection (finite or not), that is
if I ⊂ LSλ,x, then

⋂
A∈I A ∈ LSλ,x.

Proof.
1. Since the shapes of LSλ,x intersect (at least at x), they are nested.
2. We can replace I by

I ∪ {
A ∈ LSλ,x : ∃B ∈ I, B ⊂ A

}
,

this does not change the set
⋂

A∈I A.
3. Suppose ∃G ∈ I ∩ Gλ,x such that ∀A ∈ I, G ⊂ A. Then clearly G =

⋂
A∈I A, and

nothing more is to be proved. If this assumption does not stand, we can write

∀G ∈ I ∩Gλ,x, ∃F ∈ I, F ⊂ G (∗)

and we can suppose that F ∈ Fλ,x, because if F ∈ Gλ,x, there is an F ′ ∈ Fλ,x such that
F ⊂ F ′ ⊂ G (thanks to Lemma 2.36), and by the replacement on I made above, we have
F ′ ⊂ I, so that we can replace F by F ′.

4. Assertion (∗) yields easily, with the assumption that F ∈ Fλ,x:⋂
A∈I

A =
⋂

F∈I∩Fλ,x

F.

Light version: some figures are not present

2.5. RECONSTRUCTION 59

This shows that we can restrict the remaining part of the proof to the case I ⊂ Fλ,x.

5. Since elements of I are continua, their common part K is a continuum (or the single
point x), see Corollary 2.35. X \K can be written:

X \K =
⋃
F∈I

(X \ F)

and for F ∈ I, we have X \ F connected, so that X \ K is a union of connected sets
meeting a connected set X \ F0 (F0 is an arbitrary element of I), thus it is connected.
Since X is unicoherent, this implies that ∂K is connected.

6. It remains to prove that ∂K ⊂ [u ≥ λ], which would imply that ∂K is in a connected
component of [u ≥ λ] and since K = sat(K) = sat(∂K), we could write

K = sat(cc([u ≥ λ],y))

for a y ∈ ∂K, proving that K ∈ Fλ,x.

7. Indeed, let y ∈ ∂K and U a connected neighborhood of y (we use the local con-
nectedness of X). By definition of the boundary of K, there is a point z ∈ U \ K, and
therefore there is a F in I such that z 6∈ F . Moreover U ∩F 6= ∅, and since U is connected,
U ∩ ∂F 6= ∅. Thus U ∩ [u ≥ λ] 6= ∅, and U being an arbitrary (connected) neighborhood
of y,

y ∈ [u ≥ λ] = [u ≥ λ].

¤

Remark 2.13. During the proof, the following more precise statement was shown: either
there is a G ∈ I ∩ Gλ,x such that G =

⋂
A∈I A or this intersection is in Fλ,x (but not

necessarily in I).

Remark 2.14. Only a weak version of Theorem 2.39 is used in the proof of indirect
reconstruction:

⋂
A∈LSλ,x

A ∈ LSλ,x. Nevertheless the more general version given here
will be used in Chapter 4.

The reconstruction formula is the following:

Theorem 2.40 For x ∈ X and λ ∈ R,

u(x) ≥ λ ⇔
⋂

A∈LSλ,x

A ∈ Fλ,x; (2.12)

Light version: some figures are not present

60 CHAPTER 2. TREE OF SHAPES AS AN IMAGE REPRESENTATION

and conversely

u(x) < λ ⇔
⋂

A∈LSλ,x

A ∈ Gλ,x. (2.13)

Proof.
1. Suppose that u(x) ≥ λ and consider the shape

F = sat(cc([u ≥ λ],x)) ∈ Fλ,x.

We show that F =
⋂

A∈LSλ,x
A. Indeed, if

G = sat(cc([u < λ],y)) ∈ Gλ,x,

x must be in a hole of cc([u < λ],y), therefore also cc([u ≥ λ],x). This yields F ⊂ G.
Similarly, if F ′ Ã F and F ′ ∈ Fλ,x, we have a G of Gλ,x (thanks to Theorem 2.39) between
F ′ and F , which was shown to be impossible.

2. Conversely, if F =
⋂

A∈LSλ,x
A ∈ Fλ,x, we can write F = sat(cc([u ≥ λ],y)), and

if x were in a hole of cc([u ≥ λ],y), we would have an element of Gλ,x contained in F ,
thanks to Theorem 2.39, contradicting the fact that F is minimal.

3. Equation (2.13) is a direct consequence of Equation (2.12) and Theorem 2.39. ¤

The consequence of this theorem is that each point has a smallest including shape at a
given level. If this shape is a lower shape, the point is not in the level set, and if this shape
is an upper shape, it belongs to the level set. This is expressed in the following corollary:

Corollary 2.41 For λ ∈ R, we can reconstruct the level set at level λ of an upper semi-
continuous image u by the formulas:

[u ≥ λ] =
⋃

F∈Fλ,x

(
F \

⋃
G∈Gλ,x, G⊂F

G
)

(2.14)

[u < λ] =
⋃

G∈Gλ,x

(
G \

⋃
F∈Fλ,x, F⊂G

F
)

(2.15)

Proof. These equalities are direct consequences of Theorem 2.40. ¤

Light version: some figures are not present

Chapter 3

Fast Level Set Transform

3.1 Interest of the algorithm

The inclusion tree structure of shapes, studied in the previous chapter, has its equivalent
for digital images. This structure, interpreted in the discrete framework, is of high interest.
It is a contrast invariant representation of the image, encoding the topological structure of
the image. This will be used to apply various filters in the next chapter. We have designed
a fast algorithm to decompose a digital image (allowing also a trivial reconstruction), which
relies strongly on the tree structure of the shapes. A preliminary version of the algorithm,
less efficient, was presented in [59].

3.2 Continuous vs. Discrete Images

3.2.1 Generalities

First, we need to find an appropriate definition of saturation, holes, shapes for digital
images. This is a classical problem in image processing: continuous domain images are
most easily studied theoretically, because most mathematical tools are adapted to them,
but on the computer side, we have to deal with discrete images1. The translation from
continuous domain images to discrete images is scarcely straightforward, and implies often
at least numerical problems, as for example when we need to compute derivatives. This
would be less crucial if discrete images were sampled in accordance with the Nyquist rate,
but this is almost never the case, so that we have no mean to recover the continuous
domain image from the discrete one.

For this translation problem, two strategies can be adopted: interpreting the discrete
image as a continuous domain image, or redefining the notions used in the continuous do-

1In this section, the term “continuous domain image” means an image defined on a continuum, in
contrast to discrete (or equivalently digital) image, which means an array of values.

61 Light version: some figures are not present

62 CHAPTER 3. FAST LEVEL SET TRANSFORM

main case to the discrete case. The latter solution requires more work, since the discrete
counterparts of the continuous domain notions must be defined, but furthermore the prop-
erties proved in the continuous domain case are not guaranteed to hold with the discrete
notions. For example, topological inconsistencies are well known for the connectedness: in
the discrete case, two notions of connectedness exist, 4- and 8- connectedness, but none is
satisfactory, since both can encounter situations which cannot happen in the continuous
domain case. A tremendous work to study the discrete topology has been performed,
see for example Rosenfeld [67, 68] and the review of Kong and Rosenfeld in [31]. The
former solution, interpreting the discrete image as a continuous domain image, implies
an interpolation step, which can be more or less computationally expensive. Notice that
this solution does not pretend to work on the continuous domain image whose sampled
version is observed, since this continuous domain image cannot be recovered. Rather, a
continuous domain image is defined based on the pixel values.

3.2.2 Our interpolation model

The solution we adopt is to interpret the discrete image as a continuous domain image,
so taking advantage of all the results proved in the previous chapter. We suppose so that
the digital image ud provides values on the regular grid at half integers coordinates:

ud : Ωd =
{
1/2, 3/2 · · ·W − 1/2

}× {
1/2, 3/2 · · ·H − 1/2

} → R,

where W and H are the width and height of the image. The image ud is a datum of W×H

values. We interpolate these values with a very crude interpolation, ensuring however that
the resulting continuous domain image is upper semicontinuous and deduced from ud in a
contrast invariant manner. First, we define a preliminary interpolation ũc by

ũc : Ω̄ = [0, W]× [0, H] → R

x 7→
{

ud(x) if x ∈ Ωd

−∞ if x ∈ Ω̄ \ Ωd

Then we apply to ũc a dilation by the structuring element B = [−1/2, 1/2]2 (closed square):

uc(x) = DBũc (x) = sup
y∈x+B

ũc(y).

Since ũc, considered as a function from Ω̄ to R̄, is upper semicontinuous, and since uc is
the dilate of ũc by a closed set, uc is also upper semicontinuous. In the same manner,
since ũc is deduced from ud by a contrast invariant process and uc from ũc by a dilation
(which is a morphological filter), we conclude that uc is interpolated from ud by a contrast

Light version: some figures are not present

3.2. CONTINUOUS VS. DISCRETE IMAGES 63

Figure 3.1: The (simple) contrast-invariant interpolation we use to consider the digital
image ud (left figure) as a continuous domain image uc (right image). No new gray level is
introduced and the values at edgels and pointels are such that uc is upper semicontinuous.

invariant interpolation2.

The result of this interpolation is easy to state: a point x whose two coordinates are
not integers is mapped to the value of ud at the closest point in Ωd (which is unique) and
if x has at least one integer coordinate, there can be several closest points in Ωd, and it
is mapped through uc to the maximum of the values of ud at these closest points (see
Figure 3.1). In other terms, the open pixel (“picture element”) (i, i + 1) × (j, j + 1) is
mapped to the same value ud(i + 1/2, j + 1/2), the open vertical edgel (“edge element”)
{i}× (j, j +1) to max

(
ud(i−1/2, j +1/2), ud(i+1/2, j +1/2)

)
provided 1 ≤ i ≤ W −1 (to

ud(1/2, j + 1/2) if i = 0 and to ud(W − 1/2, j + 1/2) if i = W), the open horizontal edgel
(i, i + 1)× {j} to max

(
ud(i + 1/2, j − 1/2), ud(i + 1/2, j + 1/2)

)
provided 1 ≤ j ≤ H − 1

(to ud(i + 1/2, 1/2) if j = 0 and to ud(i + 1/2, H − 1/2) if j = H) and the pointel (“point
element”) {i} × {j} to

max
(
ud(i− 1/2, j − 1/2), ud(i + 1/2, j − 1/2), ud(i− 1/2, j + 1/2), ud(i + 1/2, j + 1/2)

)
(replacing in this max the values at points not in Ωd by −∞, if any).

3.2.3 Consequence on connectedness

In this framework, the classical problem of the choice of discrete connectedness is implicitly
solved. In the ambiguous situation illustrated in Figure 3.2, where ud(i− 1/2, j − 1/2) =
ud(i+1/2, j+1/2) = 1 and ud(i−1/2, j+1/2) = ud(i+1/2, j−1/2) = 0, the connectedness
of the opposite diagonal pixels depends on the value at pointel (i, j). If this value is 1
(resp. 0), the upper-left and lower-right pixels are connected (resp. disconnected) whereas
the upper-right and lower-left pixels are disconnected (resp. connected). With our choice,
this pointel has value 1. In other words, that means that we consider 8-connectedness for
upper level sets, and 4-connectedness for lower level sets.

2Notice that a translation invariant, linear interpolation, that is, a convolution, would not be a contrast
invariant interpolation.

Light version: some figures are not present

64 CHAPTER 3. FAST LEVEL SET TRANSFORM

Junction pointel

Figure 3.2: The connectedness of light or dark pixels depends on the value given for the
image at the junction pointel.

3.2.4 Shapes in digital images

Digital shapes

We will call pixel of ud a point of Ωd. ud(P) = uc(P) is called the value at the pixel
P . The open pixel associated to P = (i + 1/2, j + 1/2), noted |P |, is the open square
(i, i + 1) × (j, j + 1). Since uc is constant on an open pixel, we can talk about the value
of u at an open pixel.

If S is a set of pixels, we note |S| the union of the open pixels associated to pixels of
S:

|S| =
⋃

P∈S

|P |.

If Sc is a shape of uc, we call digital shape Sd associated to Sc the set of pixels belonging
to Sc. Thus, it is a subset of Ωd. Similar definitions apply to digital upper level sets and
digital lower level sets. We will also speak about digital connected components of these
sets.

The following easy lemma will be of use:

Lemma 3.1 Let uc be a continuous domain image derived from a digital image ud. Let
x ∈ Ω̄.

1. There is a neighborhood U of x such that for any open pixel |P |,

|P | ∩ U 6= ∅ ⇒ x ∈ |P |

2. If we note Pi, i = 1 . . . k, the open pixels P such that x ∈ |P |, then

x ∈

◦
k⋃

i=1

|Pi|

Proof.

Light version: some figures are not present

3.2. CONTINUOUS VS. DISCRETE IMAGES 65

1. Consider the union V of the open pixels |P | such that x ∈ P . Then U =
◦
V̄ answers

the question. Indeed, if |P | is an open pixel meeting U , we have V̄ ∩|P | 6= ∅, which implies
that |P | belongs to V , because we can write

|P | ∩ V̄ = |P | ∩
⋃
|Q|∈V

|Q| =
⋃
|Q|∈V

|P | ∩ |Q|

and if |P | and |Q| are different pixels, then P ∩ |Q| = ∅.
2. Since for each i, x ∈ |Pi|, we have

x ∈
k⋃

i=1

|Pi|.

Let U a neighborhood of x as in the previous point and y ∈ U . Let |P | such that y ∈ |P |.
Since U is a neighborhood of y, we have U ∩ |P | 6= ∅. By property of U , this implies that
x ∈ P , meaning that P is one of the Pi. Therefore y ∈ ⋃k

i=1 |Pi|, which shows that U is

contained in
⋃k

i=1 |Pi| and since it is a neighborhood of x,

x ∈

◦
k⋃

i=1

|Pi|.

¤

Let us show some elementary properties linking shapes to digital shapes.

Proposition 3.2 Let uc be a continuous domain image derived from a digital image ud,
Sc a shape (resp. a connected component of level set) of uc and its associated digital shape
(resp. digital connected component of level set) Sd.

1. If Sc is of upper type, then Sc = |Sd|;

2. If Sc is of lower type, then Sc =
◦
|Sd|.

Proof.
1. Whatever the type of Sc, by definition of Sd, we have Sd ⊂ Sc. If P ∈ Sd, uc is

constant on |P |, so a connected component of level set meeting |P | contains |P |. If Sc is
a connected component of level set, since P ∈ Sc ∩ |P |, then |P | ⊂ Sc. If Sc is a shape,
if P belongs to the connected component of level set C on which it is based, the result is
the same; otherwise, P belongs to a hole H of C, and C cannot meet |P |, and since |P | is
connected, |P | ⊂ H ⊂ Sc. This gives |Sd| ⊂ Sc.

Light version: some figures are not present

66 CHAPTER 3. FAST LEVEL SET TRANSFORM

2. If Sc if of upper type, it is closed, so that we have immediately |Sd| ⊂ Sc. Conversely,
let x ∈ Sc. If x has non integer coordinates, it is in an open pixel |P |, and therefore
x ∈ |P | ⊂ |Sd|. If x has at least one integer coordinate, there is a pixel P such that
x ∈ |P | and uc(P) = uc(x). Therefore |P | ∪ {x} is connected and in an isolevel set of uc.
Therefore P ∈ Sc, showing that x ∈ |Sd|.

3. If Sc is of lower type, it is open. Let x ∈ Sc. If x has non integer coordinates,
it belongs to an open pixel |P | which therefore is included in Sc. Otherwise, there is
an open ball of center x contained in Sc and of radius sufficiently small so that all open
pixels meeting it have their boundary containing x. Then there exists in this ball a point
y with non integer coordinates, belonging to an open pixel |P | and therefore x ∈ |P |.
As |P | ∩ Sc 6= ∅, we deduce that P ∈ Sd and therefore Sc ⊂ |Sd| and since Sc is open,

Sc ⊂
◦
|Sd|. Conversely, let x ∈

◦
|Sd|. If x has non integer coordinates, it belongs to an open

pixel |P | and since |Sd| ⊂ Sc, it belongs to Sc. If x has at least one integer coordinate,
let B a ball of center x included in |Sd| and of radius such that all open pixels meeting B

have their boundary containing x. Clearly, these open pixels are in |Sd|, let |P | such an
open pixel and y ∈ |P |. Since |P | is a neighborhood of y, there is a point of |Sd| in |P |
and therefore P ∈ Sd. This shows that all open pixels meeting B are in |Sd| and therefore
that x ∈ |Sd|, which itself is in Sc. ¤

Digital connectedness

Since the two notions of discrete connectedness are used, we cannot talk about the con-
nectedness of any set of pixels in general without referring to the image. Connectedness
depends on values at the pixels!

More precisely, to a pixel P ∈ Ωd, we associate the set P [of Ω̄ as:

P [= |P | ∩ {x ∈ Ω̄ : uc(x) = ud(P)}.

That is, |P | and edgels at the same level as well as pointels at the same level. To a discrete
set D ∈ Ωd, we associate D[defined by:

D[=
⋃

P∈D

P [,

and we say that D is connected if and only if D[is connected.
Therefore, a connected component of lower level set of ud is a 4-connected component of

this lower level set, the connected component of an upper level set of ud is an 8-connected
component of this upper level set, and for an isolevel it depends: some pixels can be
considered in 4-connectedness whereas others in 8-connectedness (see Figure 3.3).

Light version: some figures are not present

3.2. CONTINUOUS VS. DISCRETE IMAGES 67

2A

B
C

D
0

1

Figure 3.3: The digital isolevel uc = 1 has 4 connected components, A, B, C and D.
This shows that some neighbor pixels are considered in 4-connectedness and others in
8-connectedness, depending of the values at other neighbor pixels.

A 4-connected set of pixels remains connected independently of u. The connectedness
relative to u of an 8-connected set of pixels which is not 4-connected depends on the values
of u at its 4-neighbors.

When speaking about a connected component C of level set of ud, we call neighbors of
C the pixels 4-adjacent to a pixel of C and outside C if C comes from a lower level set, or
the 8-adjacent ones if C comes from an upper level set. For a set that is not a connected
component of level set, we must always precise if we consider 4-neighbors or 8-neighbors.

Levels associated to shapes

For reconstruction purpose, we need to store level shapes, not only shapes. That is, we
need to store the level at which some connected component of level set yields the shape.
We investigate in this section the level we must store in association with the shape.

With our interpolation model, the values of the digital image ud and of the continuous
domain image uc are the same: ud(Ωd) = uc(Ω̄), thus a finite set of values. That is why
we wish to describe the family of shapes of ud by a finite structure. The definition of the
shapes of ud is straightforward: If Sc is a shape of uc, we define the associated digital shape
Sd as the points of Ωd belonging to Sc. If we enumerate the set of values in nondecreasing
order:

ud(Ωd) = uc(Ω̄) =
{
u1, u2 · · ·un

}
,

every connected component of level shape of uc is associated to several (infinitely many)
levels. If the connected component of upper level set Uc is written Uc = cc([u ≥ λ],x)
with ui < λ ≤ ui+1 then we have

∀µ ∈ (ui, ui+1], Uc = cc([u ≥ µ],x).

In the same manner, if the connected component of lower level set Lc is written Lc =
cc([u < λ],x) with ui < λ ≤ ui+1 then

∀µ ∈ (ui, ui+1], Lc = cc([u < µ],x).

Light version: some figures are not present

68 CHAPTER 3. FAST LEVEL SET TRANSFORM

1

2 34

Figure 3.4: Two different connected component of level sets can yield the same shape.
Left: an image u with gray levels indicated. Center: from top to bottom the connected
components of lower level sets cc([u ≤ 1]), cc([u ≤ 2]) and cc([u ≤ 3]). Right: their
common associated shape.

We notice that in the latter case, we can also write:

Lc = cc([u ≤ ui],x).

Another important fact to notice is that different connected components of level sets can
yield the same shape, even if this shape is not the whole support of the image Ω̄: it is
enough that the level set grows “in the holes” only, when changing the threshold. This is
illustrated in Figure 3.4. Of course, when this shape is not Ω̄, all of these level sets are
of the same type. For the sake of reconstruction, we will store in such situations only the
tightest threshold, that is, the level corresponding to the lower level shape for the relation
4. This means we store the higher gray level for an upper shape and the lower gray level
for a lower shape. As remarked above, these tightest levels are in ud(Ωd).

Regarding the digital shape Ωd, the root of the tree, corresponding to the continuous
domain shape Ω̄, all points of Ω̄ not included in some other shape have the same gray
level (otherwise, we would not be able to reconstruct the image). We store this level in
association to Ωd.

The number of shapes

We show that the number of digital shapes is not more than the number of pixels. This
is a crucial property for practical applications, since, provided the size needed to store a
shape is constant, this ensures that the maximal memory required for the tree of shapes
is bounded by the size of image, independently of its content.

Lemma 3.3 If a shape of uc meets a connected component of isolevel, this connected
component of isolevel is included in the shape.

Light version: some figures are not present

3.2. CONTINUOUS VS. DISCRETE IMAGES 69

Proof. Indeed, we have two possibilities: either the connected component of isolevel
meets the connected component of level set on which the shape is based, in which case
the component of isolevel lies inside it, or it meets a hole of the connected component of
level set, in which case the component of isolevel lies inside the hole. ¤

Proposition 3.4 The number of digital shapes in a digital image is bounded.

Proof. As shown above, each connected component of level set of uc can be written as:

Uc = cc([u ≥ ui],x) or Lc = cc([u ≤ ui],x),

for a certain i.
Let i ∈ {1 · · ·n} and x ∈ Ω̄. If x is in an open pixel (i.e., none of its coordinates

is an integer), the connected component of isolevel containing x contains the open pixel
containing x. If x is in an edgel or a pointel, it is at the same level as some adjacent open
pixel. So this open pixel is contained in the connected component of isolevel containing
x. Thanks to the first claim, this proves that each connected component of level set of
uc at level ui contains at least one open pixel. Since these connected components are
disjoint, and the number of open pixels is finite, we deduce that the number of connected
components of level sets at a given level is finite, and therefore also the number of shapes.
Since there is a finite number of i, the number of shapes is finite. ¤

For the next result, we use several times the following (trivial) lemma:

Lemma 3.5 A finite union (≥ 2) of disjoint connected closed subsets is not connected.

Proof. If the Ci (i = 1 . . . n) are disjoint, closed and connected, C1 is closed relative to⋃
Ci, and also open in

⋃
Ci since its complement in

⋃
Ci is the union of the Ci for i ≥ 2,

each being closed. ¤

Proposition 3.6 Any shape S of a digital image contains at least one open pixel that
does not belong to any shape strictly included in S.

Proof.
1. If S does not contain strictly another shape, it suffices to show that S contains

at least one open pixel, which was shown during the proof of Proposition 3.4. For the
remaining, we suppose that S contains strictly at least one other shape.

Light version: some figures are not present

70 CHAPTER 3. FAST LEVEL SET TRANSFORM

2. Let us consider the family of shapes strictly included in S, partially ordered by in-
clusion. Since their number is finite, we can find the maximal elements, sat(U1) . . . sat(Uk)
and sat(L1) . . . sat(Ll) (k or l may be 0, but not both). It suffices to show that S contains
strictly their union to conclude, using the same argument as in the proof of Proposition
3.4.

3. Suppose that S is not Ω̄. If S is closed, ∂S is connected, so it is not ∂sat(U1)∪ · · ·∪
∂sat(Uk) since these boundaries are two by two disconnected. Let

x ∈ ∂S \
k⋃

m=1

∂sat(Um).

Since the other shapes are open, x belongs to neither of them. Thus x is in S and not in
any of the shapes strictly contained in S.

4. Suppose now that S is open. If l = 0, then sat(U1) ∪ · · · ∪ sat(Uk) is closed and
not equal to S since S is open (and different from Ω̄) and the proof is done. Otherwise,
consider ∂sat(L1). This is a connected set. Suppose that

∂sat(L1) ⊂ ∂sat(U1) ∪ · · · ∪ ∂sat(Uk). (∗)

Then let us select the ∂sat(Uj) that meet ∂sat(L1). There is only one, since otherwise we
would have one connected set (∂sat(L1)) that meets each of the connected sets ∂sat(Uj),
thus their union, that is, ∂sat(U1) ∪ · · · ∪ ∂sat(Uk), would be connected, which is not the
case (see Lemma 3.5). So there is a j such that ∂sat(L1) ⊂ ∂sat(Uj). Since sat(Uj) is
closed, we have

sat(∂sat(Uj)) = sat(sat(Uj)) = sat(Uj)

and therefore sat(∂sat(L1)) ⊂ sat(Uj) and thanks to Proposition 2.18, we deduce

sat(L1) = sat(sat(L1)) ⊂ sat(∂sat(L1)) ⊂ sat(Uj)

which contradicts the maximality of sat(L1) among the shapes strictly included in S. Thus
Equation (∗) is false.

5. Moreover, we know that ∂sat(L1) ⊂ S̄. Suppose that

∂sat(L1) ⊂ ∂S ∪
k⋃

m=1

∂sat(Um). (∗∗)

Light version: some figures are not present

3.2. CONTINUOUS VS. DISCRETE IMAGES 71

Since (∗) is false, we have ∂sat(L1) ∩ ∂S 6= ∅, and since L1 6= S and S is connected,
∂sat(L1) 6⊂ ∂S. Therefore (∗∗) yields:

∂sat(L1) ∩
k⋃

m=1

∂sat(Um) 6= ∅

and since ∂sat(L1) is connected,

∂S ∪
k⋃

m=1

∂sat(Um)

is connected. But for each m,

∂S ∩ ∂sat(Um) ⊂ ∂S ∩ ∂Um ⊂ ∂S ∩ Um ⊂ (Ω̄ \ S) ∩ Um = ∅.

which shows that

∂S ∪
k⋃

m=1

∂sat(Um)

cannot be connected. Therefore (∗∗) does not stand, and we conclude that

∂sat(L1) ∩
(
S \

k⋃
m=1

∂sat(Um)
) 6= ∅

and as it is clear that ∂sat(L1)∩ sat(Lj) = ∅ if 2 ≤ j ≤ l, then we have a point of ∂sat(L1)
belonging to S but to no shape strictly included in S.

6. The last case to be examined is S = Ω̄. Since S cannot be partitioned in a finite
number of disjoint closed sets sat(Um) (this would contradict its connectedness), and if
l = 0, it suffices to take any point of S not in any sat(Um). So suppose now that l ≥ 1.
As in the previous case, we can prove that (∗) does not stand. From there, the conclusion
is more easy than in the previous case since ∂S = ∅, showing that any point of

∂sat(L1) \
k⋃

m=1

∂sat(Um)

answers the required property. ¤

The interpretation of Proposition 3.6 is that any shape S contains a point of Ωd that
is not in any strictly included shape, that is, a point whose smallest containing shape is
S. This gives an injective map between shapes of uc and points of Ωd, proving that the
number of shapes cannot exceed the number of pixels.

Light version: some figures are not present

72 CHAPTER 3. FAST LEVEL SET TRANSFORM

Remark 3.1. In the discrete case, a small liberty can be taken with respect to the
axioms of a saturation operator. We can tolerate that the saturation of the complement
of a saturated set is not Ωd but itself, and still have an extraction and a reconstruction,
in the case that this saturated set meets the frame of the image and is of area exactly
half that of the image. In this occurrence, we can tolerate that the image is split into
two shapes (this concerns very particular images, and very unlikely to happen in natural
images). In that case, the root of the tree contains no proper pixel, and the number of
shapes can reach the number of pixels, plus one, but not more.

Smallest containing shape

For the point P = (i + 1/2, j + 1/2), we consider the two shapes:

S≥P = sat(cc([u ≥ ud(P)], P)) and S≤P = sat(cc([u ≤ ud(P)], P)).

We claim that one of them is the smallest shape containing P . Indeed, the family of shapes
containing P is finite, and they are by definition not disjoint, so they are nested, showing
that there exists a smallest shape containing P . Let C be a connected component of level
set (call its level λ) on which this smallest shape is the saturation. Then P belongs to
C, otherwise it would be contained in a hole of C, which, as a consequence of the claim
below, would contradict the minimality of the shape. If C is an upper (resp. lower) level
set, then ud(P) ≥ λ (resp. ud(P) ≤ λ) and C contains the connected component of level
set of the same type at level ud(P) and by the minimality argument, they must be equal.

Proposition 3.7 A hole in a connected component of level set in a digital image is a
shape.

Proof.
1. Let C a connected component of level set, Cd its digital counterpart, and H a hole

in C. For any x ∈ ∂H, let us show that there is an open pixel in H whose boundary
contains x. Otherwise, all open pixels whose boundary contains x would belong to C or
another connected component of the complement of C. The latter is impossible, since such
a component D would be such that D ∩H 6= ∅ and therefore H ∪D would be connected.
The former is also impossible, since it would imply that all open pixels whose boundary
contains x are in C, and if we note Pi the pixels associated, we would have thanks to point
2 of Lemma 3.1:

x ∈
◦⋃

i

Pi ⊂
◦
|Cd|.

Now, thanks to Proposition 3.2, we have

◦
|Cd| =

◦
C

Light version: some figures are not present

3.3. THE FLST 73

and therefore x ∈
◦
C, contrary to the hypothesis x ∈ ∂H. Let F the union of the open

pixels of H whose boundary meets ∂H, which is therefore not empty.

2. Suppose that C is of upper type, C = cc([u ≥ λ],x). Let µ the maximum of uc on
F (this maximum exists, since uc takes only a finite number of values). Then if y ∈ F

H = sat(cc([u ≤ µ],y)).

Indeed, if we note H ′ the shape on the right hand side, we have µ < λ, and therefore
cc([u ≤ µ],y) ⊂ H, yielding H ′ ⊂ H. It is clear that ∂H ∩ ∂H ′ 6= ∅. Since

∂H ′ ⊂ ∂ cc([u ≤ µ],y)

and ∂ cc([u ≤ µ],y) ⊂ [u > µ], if we note ν the value taken by u immediately superior,
we get ∂H ′ ⊂ [u ≥ ν]. Let D the connected component of [u ≥ ν] containing ∂H ′. D

and F are disjoint, suppose that D contains an open pixel in H. D is composed of the
closure of the open pixels contained in it (Proposition 3.2), so its boundary cannot meet
∂H, because all open pixels of H whose closure meets ∂H are in F , so have a value strictly
less than ν. But evidently we have ∂H ′ ⊂ ∂D. This contradicts the fact that ∂H ′ meets
∂D. This shows that D does not meet H, and therefore ∂H ′ = ∂H, so that H ′ is a subset
of H with no boundary in H. By connectedness of H, we get H = H ′.

3. If C is a lower level set, H is closed and therefore F ⊂ H. Since ∂H ⊂ F and ∂H

is connected, we deduce that F is connected. Then if µ is the minimum of uc on F , by
upper semicontinuity of uc, we deduce that F̄ is in a connected component of [u ≥ µ],
which does not meet C. Then

H = sat(H) = sat(∂H) ⊂ sat(F) ⊂ sat(cc([u ≥ µ],y)).

This gives easily H = sat(cc([u ≥ µ],y)). ¤

Notice that this property is specific to digital images, it does not stand for a general
semicontinuous image, see Figure 3.5.

3.3 The FLST

The FLST, for “Fast Level Set Transform”, is our algorithm to extract the shapes of a
digital image and represent them in a tree structure.

Light version: some figures are not present

74 CHAPTER 3. FAST LEVEL SET TRANSFORM

A

O

C2Cn
C1 C0

Figure 3.5: For a general semicontinuous image, it can occur that a hole in a connected
component of level set is not a shape. The characteristic function of the set F = A∪C1 ∪
· · · ∪Cn ∪ · · · is upper semicontinuous. A is a connected component of level set, having a
disk as hole, which is approached by the Cn, circles of increasing radius. For every point
x in the hole and not in F , the shape sat(cc([u < 1],x)) is strictly included in the hole.
Nevertheless, the hole is the union of all such shapes.

3.3.1 Input and Output of the FLST

As input, the FLST takes only a digital image. As output, it gives the tree of shapes. Let
us detail the data structure used for it.

The values of the image are given in an array of size W × H. It is convenient to
enumerate it line after line, each line from left to right (as in text reading), we note the
successive values u1, u2 · · ·uN with N = W.H.

A data structure for a digital shape that is easy to deal with is:

{Structure of a digital shape (node of the inclusion tree)}
Parent, Child, NextSibling {Pointers to other nodes}
Type {Lower or upper shape}
Gray {The associated gray level}
Data {Characteristics of the shape}

The local tree structure is encoded in the shape by the fields Parent, Child and
NextSibling. The root of the tree, i.e., the shape Ωd has null parent, the leaves of the
tree, i.e., regional extrema of the image without holes, have null child. The siblings (that
is, different shapes having the same Parent) are encoded in a linked list, the link being
given by NextSibling. In that manner, the procedure to enumerate the list of children
of a shape is:

Light version: some figures are not present

3.3. THE FLST 75

Require: P {The parent shape}
C {Becomes successively each child of P}
C ← Child(P)
while C 6= ∅ do

Output C {C is a child of P}
C ← NextSibling(C)

end while
The field Gray of the shape is the gray level associated to the shape, as explained in

Section 3.2.4. Notice that the field Type has no meaning for the root.
The inclusion tree of shapes has the following data structure:

{Structure of the inclusion tree}
W , H {Dimensions of the image}
Root {The root of the tree}
SmallestShape = S1 · · ·SN {Array of the smallest shapes}

The array SmallestShape gives the smallest shape containing each pixel. For the pixel
of index i, Si points to its smallest including shape.

3.3.2 Description of the algorithm

Reconstruction

The reconstruction algorithm is straightforward and of linear complexity, see Algorithm
1. Each pixel gets the gray value of the associated smallest shape. Notice that the Type

of the shape is not used.

Algorithm 1 Reconstruction of the image from its inclusion tree

Require: T {The inclusion tree}
u ←Array of size N = W.H {Creation of the array}
for i = 1 to N do

ui ← Gray(Si)
end for

Basics of extraction

The extraction algorithm is much more complex. During the execution of the algorithm,
the image is modified. At the end of the algorithm, the image is uniform at the gray level
of the root.

We also use an image of markers, Tag(P) for a pixel P . Originally, Tag(P) is false
for each pixel P ; then, after a pixel is examined, it becomes true.

We use a queue data structure, storing an array of pixels, so that we can in constant
time:

Light version: some figures are not present

76 CHAPTER 3. FAST LEVEL SET TRANSFORM

– add a new pixel;

– return and remove all pixels at a given gray level;

– return the minimum and maximum values of its pixels.

The idea is to have for each possible gray level value g an array containing the pixels at
gray level g. This is reasonable provided the number of gray level values is small. This
is the case for an 8-bit image, the number of possible gray levels being 256. However, for
an image where each pixel is a floating point value, there can be as many gray levels as
pixels, so that such a data structure is not adapted. We will restrict our discussion to
8-bit images3.

The pixels we will store in this queue are the neighbors of the current region, therefore
it will not contain more pixels that the image. Instead of allocating 256 arrays of N

pixels, which would be memory consuming, we can do the same with only N pixels and
256 indexes. This queue will be noted N and its structure is:

{Structure of the queue N}
Min, Max {Minimum and maximum gray values of the pix-
els}
Size {The number of pixels in the queue}
Pixels[N] {Array of Size, not larger than N}
Next[N] {Array of Size pointers to elements in Pixels}
First[256] {Array of pointers to elements in Pixels}

For each element in the array Pixels, the element at same index in Next points to the
next pixel of same gray level. The first one is given by the array First. In this manner,
the set of pixels having a given gray level is extracted by taking First and following the
links. Adding a pixel at level g in N is easy. We note this operation N ← N ∪ (P, g):

3Actually, the algorithm can be adapted to images with gray levels encoded on any number of bits. For
this, we would use a priority queue; the neighbors of the current region are sorted in a balanced binary tree
with the following property: any node has a gray level not less than its two children. Thus the neighbor of
largest gray level is always at the root of the tree. When we look for a connected component of superior
type, this is what is needed, for inferior type, we do the appropriate changes. The maximum size of this
tree in memory is the size of the image, the insertion of a new neighbor takes O(d) where d is the depth
of the tree and the deletion of a neighbor also. This is the structure used by the “heapsort” algorithm.
In practice, a decay of around 30% of the performance is observed for floating point real numbers, but it
appears to be mainly due to the fact that different types of values are compared: integers on one byte in
the first case, and floating point real numbers in the second case.

Light version: some figures are not present

3.3. THE FLST 77

{Adding a pixel in N}
Require: Pixel P of level g

Size←Size+1
PixelsSize ← P {Adding pixel P in a free place}
NextSize ←Firstg

Firstg ←PixelsSize
Min← min(g,Min)
Max← max(g,Max)

Removing pixels of N at level g consists in extracting them as explained above, then
setting Firstg to ∅ and:

– If g =Min, increasing Min until FirstMin 6= ∅.

– If g =Max, decreasing Max until FirstMax 6= ∅.

We note this procedure N ← N \ [N = g], where [N = g] represents the pixels in N of
gray level g.

Since pixels at the same gray level have no reason to be in the end of the array
Pixels, removing them leaves holes in the arrays. Instead of moving elements of Pixels
and updating the corresponding pointers Next, a fastidious operation, we can keep in
memory an array of free places, and when a new pixel is added, it gets the first free place
if there is one, otherwise it is appended to the array Pixels.

Main loop

First, initializations of variables take place: Tag(ui) is set to false for all i, N is empty,
and the tree T contains only the root.

The main loop of the algorithm is simple: it is just a scan of the image, calling a
procedure of extraction when a non-tagged local extremum of the image is found. The
procedure ExtractBranch is explained below.

The definition of local extremum needs some explanation. The locality is represented
by the neighbors. The pixel P is said to be a local extremum of u if and only if:

1. ∀Q 4-neighbor of P , u(P) ≤ u(Q) (local minimum) or

2. ∀Q 8-neighbor of P , u(P) ≥ u(Q) (local maximum);

3. ∃Q k-neighbor of P such that u(P) 6= u(Q).

The k in third point is 4 in case 1 and 8 in case 2. Clearly these two cases exclude each
other.

Light version: some figures are not present

78 CHAPTER 3. FAST LEVEL SET TRANSFORM

Algorithm 2 The main loop of the FLST.
for i = 1 to N do

if (not Tag(ui)) and (ui is a local extremum) then
Call ExtractBranch(ui)

end if
end for

Extraction of branch

We describe here the procedure ExtractBranch, which extracts the branch containing a
given pixel.

Definition 3.8 For a pixel P , we call branch at P the set of shapes S containing P and
such that for any shape S′, S′ ⊂ S ⇒ P ∈ S′.

Notice that the branch containing P can be empty.
This procedure extracts the branch at P only if P belongs to a regional extremum

(this is not a limitation, as Section 3.3.3 will show).

Definition 3.9 A subset R of Ωd is said to be a regional minimum (resp. maximum) if it
is a maximal subset for the relation “being connected and containing only local minima”
(resp. maxima).

Remark 3.2. The notion of maximum and minimum is taken here in the large sense: if
all neighbor pixels are at the same value, we say also it is an extremum.
Remark 3.3. Of course, this definition given for pixels, where the term “connected”
means, as usual in this dissertation, 4-connected for minimum and 8-connected for max-
imum, remains identical for continuous domain images, with the topological definition of
connectedness.

As expected, the regional extrema are disjoint.

Lemma 3.10 The regional extrema of a digital image are disjoint.

Proof.
1. The subsets “being connected and containing only local minima” (resp. maxima)

are closed by union when they are not disjoint. Indeed, if two subsets contain only local
minima (resp. maxima) and intersect, their union remains connected, and contains also
only local minima (resp. maxima).

2. If a pixel P is common to a regional maximum M1 and a regional minimum M2,
then by maximality all pixels outside M1 and neighbor of M1 are at a strictly less gray
level, so pixels at the digital boundary of M1 (i.e., pixels of M1 having a neighbor not
in M1) cannot be local minima, and M2 being connected, that means M2 ⊂ M1. For a
similar reason, M1 ⊂ M2 and it yields M1 = M2. Finally, this implies that M1 has no

Light version: some figures are not present

3.3. THE FLST 79

4

0

4

0
2

3

1

2

1

3

Figure 3.6: Removal of a shape. Left: initial image. Right: image when the shape S at
isolevel 3 is removed. S is a connected component of upper level set in the initial image,
its pixels take the maximum gray level at its neighbors, 2.

neighbor so that the image is constant. ¤

Remark 3.4. A regional minimum (resp. maximum) is thus a connected component of
isolevel for which all neighbors have a larger (resp. smaller) gray level.

The idea of ExtractBranch is to remove a shape as soon as it is detected and stored
in the tree. What we mean by removing a shape is putting all pixels of the shape at the
lowest gray level of neighbors in case of a lower shape and at the largest gray level of
neighbors for an upper shape (see Figure 3.6).

As a shape containing P contains its connected component of isolevel, we need first
a procedure to find this isolevel. The strategy is region growing, using the queue N .
This procedure, ExtractRegionalExtremum, is described in Algorithm 3. Notice that
this algorithm extracts as well a regional minimum as a regional maximum. Since we
cannot always know in advance if P belongs to a regional minimum or maximum (or
neither of them!), we have the problem of the choice of connectedness. The solution is to
choose the more restrictive notion, namely 4-connectedness, and switch to 8-connectedness
when we meet a neighbor of gray level strictly lower, since in this case we expect a regional
maximum. This does not lose neighbors in case P belongs actually to a regional maximum,
because the diagonal neighbors of a pixel Q are 4-neighbors of the 4-neighbors of Q.
Remark 3.5. When adding a neighbor to N , we have to check if it was not already put
in it (because it can be a neighbor of several pixels in R). An easy way to check this is to
have an image of flags, ImageNeighbors, where each flag indicates if the pixel was added
as a neighbor to the current region or not4. ImageNeighbors is also used to compute the
number of holes of the current set, as we shall explain later.

The procedure ExtractBranch (see Algorithm 4) first extracts a regional extremum
stores it as a shape if it has no hole, removes it, then again extracts the regional extremum,
etc. There are three break conditions:

4Actually, to avoid reinitializing this image at each call of ExtractRegionalExtremum, we would rather
have an index Index incremented at each call, and have for ImageNeighborsi a pair (Indexi,Flagi). In this
manner, the test to know if a pixel was already considered as neighbor is “Indexi =Index and Flagi” and
the instruction to store the fact that a new neighbor is added is “Indexi ←Index and Flagi ←TRUE”.

Light version: some figures are not present

80 CHAPTER 3. FAST LEVEL SET TRANSFORM

Algorithm 3 ExtractRegionalExtremum: Extraction of the connected component of
isolevel containing P , if this set is a regional extremum.

Require: P , g {Pixel P at level g}
R ← ∅ {The connected component of isolevel}
N ← {P} {The queue of neighbors}
while [N = g] 6= ∅ do
A ← [N = g] {Array of current pixels to add}
N ← N \ [N = g] {Remove them from N}
for Q ∈ A do {All neighbors at level g}
Tag(Q)← TRUE {Tag these pixels}
R → R ∪ {Q} {Add pixel Q in R}
for all Q′ 4-neighbor of Q do
N ← N ∪ {Q′}

end for
if Min< g then {We expect a regional maximum}

for all Q′ diagonal neighbor of Q do
N ← N ∪ {Q′}

end for
end if
if Min< g <Max then

Exit and return ∅ {P does not belong to a regional extremum}
end if

end for
Return R

end while

Light version: some figures are not present

3.3. THE FLST 81

2

1

0
P

2

P
11

P

2
2

 2 1 2
PSfrag replacements

≤ 1 ≤ 1

≤ 0

≥ 2

≥ 2

Figure 3.7: The break conditions in the procedure ExtractBranch. Each column shows a
configuration and its associated tree, with smallest shape containing the pixel P grayed. In
each configuration, P is recognized as a local minimum. In the first case (left), P does not
belong to a regional minimum. In the second case (middle), the smallest shape containing
P is a regional minimum, but it has a hole. In the third case (right), the smallest shape
containing P is a regional minimum, but meets the frame and has area larger than half
the image, so it is the root.

1. P does not belong to a regional extremum;

2. P belongs to a regional extremum which has some hole;

3. The regional extremum containing P meets the frame of the image and its area is
larger or equal than half the image.

In the first two cases, there is another shape, not containing P , but included in the smallest
shape containing P (a regional extremum without hole in the first case, the hole or a subset
of it in the second case). In the third case, the smallest shape containing P is the root of
the tree, so that the level associated to the root is u(P) (see Figure 3.7).

Notice that instead of really removing the current regional extremum when it is found
to be a shape, that is, set all its pixels to the nearest gray level of the neighbors, since after
that we continue the region growing, it is sufficient to make as if the shape was removed
and consider that the pixels of the shape are at the current gray level. In the same manner,
in the image ImageNeighbors, the flags of the pixels of the found shape are already up to
date, so nothing special is to be done in that image to continue the region growing5. The
gray level u(R) involved at the end in Algorithm 4 means in fact the current gray level of
region growing.

5That means that the Index used to avoid the reinitialization of ImageNeighbors must be incremented
at each call of procedure ExtractBranch, not at the call of ExtractRegionalExtremum.

Light version: some figures are not present

82 CHAPTER 3. FAST LEVEL SET TRANSFORM

Algorithm 4 The procedure ExtractBranch, extracting the branch containing a pixel P

Require: P {The pixel}
End← FALSE {Flag of end of the procedure}
while not End do

R ←ExtractRegionalExtremum(P)
if R = ∅ or R has a hole then
End← TRUE

else if R ∩ frame 6= ∅ and #R ≥ N/2 then
Gray(Root)← u(R)

else
Store R as a new shape in the tree

end if
end while
for all Q ∈ R do {Remove the branch in u}

u(Q) ← u(R) {u(R) means the current gray level}
end for

Counting holes

We did not explain how to compute the number of holes in a regional extremum. The
fact that we use 8-connectedness (resp. 4-connectedness) for this set and 4-connectedness
(resp. 8-connectedness) for its complement, allows to compute the Euler characteristic
from local configurations of the set. This property was proved by Rosenfeld and Kak in
[70]. Notice that this property is lost when the same notion of connectedness is used for the
set and its complement (see Kong and Rosenfeld [32]), another kind of lack of coherency
of discrete topology relatively to continuous domain topology, when only one notion of
discrete connectedness is used.

We recall that the Euler characteristic of a set S is n−m+1 where n is the number of
connected components of S and m the number of connected components of its complement.
Since we deal with connected sets, n = 1, so that the Euler characteristic is 1 − h where
h = m− 1 is the number of holes of S. The local configurations in question are blocks of
at most 2× 2 pixels (see Figure 3.8). Since our algorithm is based on region growing, we
had better count the variation of the Euler characteristic of a set when we add one pixel
to it. This means that we have to examine the 3 × 3 neighborhood centered at the new
pixel to compute this variation, since the only 2 × 2 changed blocks are included in this
3× 3 neighborhood (see Figures 3.9 and 3.10).

The last problem is linked to the case where we do not know in advance the con-
nectedness to choose, because all neighbors of the current set are at the same gray level.
As we explained above, we use in this case 4-connectedness for the set (and therefore
8-connectedness for the complement). But if we find a neighbor of strictly lower gray
level, we switch to 8-connectedness. This can induce errors in the computation of the

Light version: some figures are not present

3.3. THE FLST 83

a b c d

Figure 3.8: The Euler characteristic of a set S of pixels in 4-connectedness and the comple-
ment in 8-connectedness can be computed locally by counting the number of configurations
on blocks of size at most 2× 2. It is equal to the number of possible positions of dominos
of shape a and d contained in S minus the number of possible positions of dominos of
shape b and c. The number of positions of dominos of type a is #S, the cardinality of S.

1 1 2 1

3 2 1 1

-1

Figure 3.9: The variation of the number of holes of a shape when we add a 4-neighbor P to
a 4-connected set S, according to the local configurations, that is, the 3×3 neighborhoods
centered at P . Pixels of S are represented in black, pixels not in S are left in white
and pixels being in S or not, indifferently, in gray. To these configurations, we must
add all their quarter and half turn rotates and the vertically or horizontally symmetric
configurations. The configurations which cannot be obtained by such operations either do
not modify the number of holes or are impossible (P would not be a 4-neighbor of S).

Light version: some figures are not present

84 CHAPTER 3. FAST LEVEL SET TRANSFORM

1 1 1 1

2 2 1 3

-1

Figure 3.10: The variation of the number of holes of a shape when we add an 8-neighbor
P to an 8-connected set S, according to the local configurations around P . The rotated
and symmetric versions of these configurations add or subtract the same number of holes.
See Figure 3.9 for explanations about the configurations.

Euler characteristic, see Figure 3.11. The solution to this case is easy. When we switch
to 8-connectedness in considering a 4-connectedness set, we do not add holes, so that the
set, which had no hole before (otherwise, we would have met a neighbor of different gray
level before), remains with no hole. Notice that this case of ambiguity, a delicate detail of
the algorithm, although easily dealt with, cannot happen for the initial region growing in
procedure ExtractBranch, since the pixel P must have at least one neighbor of different
gray level.

Storing shapes

The last point to explain is how we store the shapes when they are detected. That is, we
need to find its place in the tree T . This is done with the help of the array SmallestShape,
and we explain also how to fill this tree. For the sake of performance of the algorithm,
we also use an array LargestShape, which becomes useless at the end of the FLST. This
array, whose elements we note L1, · · · , LN are pointers to the largest extracted shape
(except Ωd) containing each pixel in the tree. Of course, this array can be deduced from
SmallestShape and the tree: It is enough to start from Si and go up the tree until we
reach a node whose parent is the root; this node is Li. Nevertheless, to have this array in
memory saves computation time.

Initially, we set each Si to ∅ and each Li to Root. When a new shape S is detected,
we have its set of pixels R. For each pixel ui of R whose associated Si is ∅, we set Si to
S. For each ui of R whose associated Li is not Root, we put the shape pointed to by Li

as child of S, the subtree rooted at the node Li remaining unchanged. Finally, for each
pixel ui ∈ R, we set the associated Li to S.

Light version: some figures are not present

3.3. THE FLST 85

2

0
1

0

Q

P

R

S

Figure 3.11: Possible error in Euler characteristic when all neighbors of the current set
are at the same gray level. The region R is a connected component of lower level set, at
level 0, so considered in 4-connectedness, without hole. When the shape is removed, all
neighbors are at same gray level, 1. If the neighbor P is first appended to the current
region, it has S as neighbor, at a lower gray level, 0. So we switch to 8-connectedness.
But this modifies the Euler characteristic of the current region, which becomes 2, because
the pixel Q is now a hole in the current region. When Q is appended to the region, this
decrements the Euler characteristic, which must be corrected to be 1 after Q is appended.

3.3.3 Analysis and proof of correctness of the FLST

In this section, we give a justification of the algorithm, and explain why it is correct. This
is due to a few results which we shall prove. Some of them are valid for a continuous
domain image, but we shall prove them only in the case of digital images, because they
are used only to justify the algorithm.

Role of local extrema

Lemma 3.11 A connected component of lower (resp. upper) level set contains a regional
minimum (resp. maximum).

Proof. Consider the minimum value taken by u on the component C and a point P

where this minimum is reached. The connected component of isolevel I containing P is
then a regional minimum: if Q is a neighbor of this component of isolevel, there are two
possibilities:

1. Q ∈ C, in this case u(P) ≤ u(Q) by definition of P and we cannot have equality,
otherwise I ∪ {Q} would be connected and at isolevel u(P).

2. Q neighbor of a pixel P ′ of C ∩ I, in which case u(P ′) < u(Q), otherwise C ∪ {Q}
would be connected and in the same level set as C. Since u(P) = u(P ′), the proof is done.
¤

Light version: some figures are not present

86 CHAPTER 3. FAST LEVEL SET TRANSFORM

2

2

1

Figure 3.12: The lower shape associated to the connected component of lower level set 1
contains a regional maximum without holes, not a regional minimum without holes.

Proposition 3.12 A shape contains a regional extremum without holes, which is a shape.

Proof.
1. If the shape contains only one pixel, it is a connected component of level set without

hole, so it is a regional extremum. Suppose the result is proved for all shapes of area ≤ n

and take a shape S of area n + 1 based on a connected component of level set C. If C has
at least one hole H, H is a shape of area ≤ n and by hypothesis, this implies the result.
If C has no hole, from Lemma 3.11, it contains a regional extremum R. Then sat(R) ⊂ S.
If R has no hole, it answers the required condition, if it has at least one hole, it is of
area ≤ n, and by hypothesis sat(R), and therefore also S, contains a regional extremum
without hole.

2. Any regional extremum is a connected component of level set, and if it has no hole,
it is a shape. ¤

Remark 3.6. Proposition 3.12 does not precise the type of extremum. Indeed, it is not
true that a lower shape contains a regional minimum without hole, see Figure 3.12.
Remark 3.7. It is clear that a regional extremum without holes is a terminal shape,
that is, a leaf of the inclusion tree. Conversely, if S is a terminal shape, Proposition 3.12
shows that it contains as included shape a regional extremum without holes, and since
it is terminal, these shapes are equal. This characterizes the leaves of the inclusion tree:
they are the regional extrema without holes of the image.

Removal of branches

We show first that removing branches from an image does not create new shapes, although
it can create new branches. We say that a branch is removed from the image when its
largest shape is removed. We remind that we say that a lower (resp. upper) shape
is removed if all its pixels have been set to the lowest (resp. largest) gray level of its
neighbors.

Light version: some figures are not present

3.3. THE FLST 87

Proposition 3.13 explains the effect of the removal of a terminal shape on the inclusion
tree.

Proposition 3.13 Let u an image and S a terminal shape of u, that is, a shape containing
no other shape. Let ũ the image u when the shape S is removed. Then the inclusion tree
of ũ is the inclusion tree of u in which the node corresponding to S was removed as well
as the edge between S and its parent.

Proof.
1. As remarked above, since S is a terminal shape of u, it is a regional extremum of

u, thus a connected component of isolevel in u. Let g its level.
2. S is strictly included in a connected component of isolevel of ũ. The fact that S

is in an isolevel ũ follows from the definition of the removal of S. If S is 4-connected in
u, it is connected in u and ũ, and there is a 4-neighbor Q of S at the same level in ũ, so
that S ∪ {Q} is connected and in an isolevel. If S is not 4-connected, S is a connected
component of upper level set in u, let Q a 8-neighbor of S having the same value in ũ.
The 4-neighbors of S have the same value in u and ũ, so they have a gray level less or
equal than Q and S. Thus the junction pointels of S and between Q and S are at the
same level, so that S ∪ {Q} is connected.

3. We claim that the shapes of ũ are shapes of u. Indeed, let C a connected component
of level set of ũ. Since S is a connected part of an isolevel in ũ, either C contains S or
C ∩ S = ∅. Let us examine the two cases.

4. If C ∩ S = ∅, pixels of C have the same value in u and ũ. If Q′ is a neighbor of
C at point Q, the order of gray levels at these points is the same in u and ũ; if Q′ 6∈ S,
this is obvious, if Q′ ∈ S, two possibilities: if Q is a neighbor of S in u, this is also clear,
otherwise Q and Q′ are diagonal neighbors, S is of lower type in u (thus u ≤ ũ), whereas
C is of upper type in ũ, and if R is a common 4-neighbor of Q and Q′, we have

ũ(Q) = u(Q) ≥ u(R) ≥ ũ(Q′) > u(Q′)

so that the order is also the same. This shows that C is also a connected component of
level set in u6.

5. Suppose now that S ⊂ C. If S is of the same type in u as C in ũ, for example
of superior type, we write C ∈ [ũ ≥ λ], C is 8-connected, and since u|S > ũ|S and
u|Ωd\S = ũ|Ωd \ S, we have C ∈ [u ≥ λ], and C being 8-connected, C is a connected
component of upper level set in u. For analogous reasons (with 4-connectedness this
time), if S in u and C in ũ are of connected components of lower level sets, we find again
that C is a connected component of lower level set in u.

6This is not sufficient to conclude directly that the shapes associated to C are the same in u and ũ,
because the connected components of the complement of C in u and ũ must also be compared.

Light version: some figures are not present

88 CHAPTER 3. FAST LEVEL SET TRANSFORM

6. If S is of upper type in u and C of lower type in ũ, C ∈ [ũ ≤ µ]. Since u|Ωd\S =
ũ|Ωd\S , we have C \ S ∈ [u ≤ µ]. Let Q′ ∈ Ωd \ C) a 4-neighbor of C at Q. We have
u(Q′) = ũ(Q′) > µ ≥ ũ(Q) and Q 6∈ S, otherwise we would have u(Q) > u(Q′) and by
definition of the removal of S, ũ(Q) ≥ u(Q′). Therefore, ũ(Q) = u(Q) and we deduce
u(Q′) > µ ≥ u(Q). If S ∈ [u ≤ µ], we deduce that C ∈ [u ≤ µ], and since C is 4-connected
and any 4-neighbor of C is in [u > µ], it follows that C is a connected component of
[u ≤ µ]. The remaining case is S ∈ [u > µ]. In that case, S is a connected component
of [u > µ], otherwise there would be an 8-neighbor Q of S with u(Q) > µ and it would
follow that S ∈ [ũ > µ]. Consider Q ∈ C \ S, 4-neighbor of S. The connected component
D of (C \ S)[(symbol [understood when considering C \ S as a subset of u) containing
Q has its boundary meeting ∂S[. Since D is open, we have ∂D ∈ [u > µ]. Since ∂S[is
connected and in [u > µ], we have either ∂S[∈ sat(D) or ∂S[∈ Ω̄ \ sat(D). The latter
case would imply that (∂sat(D)) ∩ (∂S[) 6= ∅ and since ∂sat(D) is connected, in [u > µ]
and meets a S[, which is a connected component of [u > µ], we would have ∂sat(D) ⊂ S[,
and since Ω̄ \ S[is connected, we would have D = Ω̄ \ S[, and thus sat(D) = Ω̄, excluded
by hypothesis. Therefore ∂S[⊂ sat(D) and thus sat(∂S[) = S[⊂ sat(D). This is true
for any connected component of (C \ S)[whose boundary meets ∂S[. If there are several,
take two of them, D and D′. Their saturations intersect, so they are nested, for example
sat(D) Ã sat(D′). Therefore, S[∩ D′ = ∅, since sat(D) ∩ D′ = ∅. Thus D′ is open and
closed in C[, which contradicts the connectedness of C[. We conclude that (C \ S)[is
connected, and that S[is a hole in it. That is to say, C \ S is a connected component of
lower level set and its associated shape contains S.

7. If S is of lower type in u and C of upper type in ũ, a similar proof shows that either
C is a connected component of upper level set in u or C \ S is, and in the last case S is a
hole of C \ S.

8. Let S′ a shape of ũ, saturation of the connected component of level set C. If
#S′ = 1, then S 6∈ S′ and C = S′ is a connected component of level set of u according
to what precedes. So S′ is a shape of u. Assume we have shown that all shapes of ũ of
area at most n are shapes of u. Let S′ of area n + 1. If S ∈ C, then C \ S is a connected
component of level set of u and S is a hole of C \ S, so that S ⊂ sat(C \ S) (saturation
in u). If S 6∈ C, C is a connected component of level set of u. If H is a hole of C, it is a
shape of area at most n of ũ, so by hypothesis it is a shape of u. This shows in any case
that C is a shape of u.

9. Reciprocally, we show that any shape S′ of u other than S is also a shape of ũ. This
follows the same lines as above.

10. This shows that the shapes of u and ũ are the same, except that S has disappeared
from the shapes of ũ. Therefore, the nodes in the trees are the same, except for the nodes
corresponding to S, and the edges of the tree representing inclusion, they remain identical,
except that the edge between S and its parent disappears in the tree of ũ. ¤

Light version: some figures are not present

3.3. THE FLST 89

a b
c d e

Figure 3.13: A tree and its 5 (non empty) branches, a to e.

This gives an interpretation of the branches in terms of the tree (see Figure 3.13).

Corollary 3.14 Let u an image and P a pixel and S its smallest associated shape.

– If S is not terminal, the branch associated to P is ∅.

– If S is terminal, the branch associated to P is the union of ancestors P of S such
that if P ′ is a shape, P ⊃ P ′ ⊃ S ⇒ P ′ has only one child.

Proof. If S is not terminal, it contains strictly a regional extremum without holes, which
is a shape and does not contain P since S is the smallest shape containing P . Therefore,
the branch associated to P is empty.

If S is terminal, let ũ the image u after removal of S, and S′ the smallest shape asso-
ciated to P in ũ. S′, which is also a shape of u, belongs to the branch associated to P if
and only if it is terminal, that is, its only descendant in the tree of u is S. In this manner,
we can go up the tree while the shapes are terminal. ¤

Remark 3.8. This gives an interpretation of the removal of a branch in terms of removal
of terminal shapes: it is simply the result of the successive removals of the shapes in the
branch in increasing order, each one being terminal when it is removed.

The following proposition shows that the pixels of a removed branch have no associated
branch.

Proposition 3.15 Let ũ an image deduced from u by removing some branches. Let B

such a removed branch, of largest shape L. Then if P ∈ L, the branch associated to P in
ũ is ∅.

Light version: some figures are not present

90 CHAPTER 3. FAST LEVEL SET TRANSFORM

Proof. ũ is deduced from u by successive removals of branches B0, . . . , Bk, resulting in
images ũ1, . . . , ũk+1 where each Bi is a branch of ũi, and with ũ0 = u and ũk+1 = ũ.
Suppose there is a terminal shape S in ũ containing P . Let 0 ≤ l ≤ k the index of the last
removed branch whose one shape contains P . Then S is also a terminal shape of ũl+1,
otherwise all descendants of S would have been removed at subsequent steps l′ ≥ l + 1,
and for the last of these l′, S would be a shape whose only child is the largest shape of
Bl′ , implying that S would be included in Bl′ .

For the same reason, there is a contradiction by considering the largest l′′ ≤ l for which
Bl′′ contains a descendant of S. ¤

Remark 3.9. This proposition justifies the fact that pixels that are tagged do not need to
be examined any more, even if they are local extrema. Indeed, the tagged pixels correspond
to either pixels belonging to a removed branch, or pixels connected to the largest shape of
a removed branch in an isolevel but which have a hole (so are not associated to a terminal
shape). This explains that ExtractBranch is called from the main loop with parameter a
non tagged local extremum.

Correctness of the algorithm

The above results show that:

– Each branch can be removed by removing successively terminal shapes;

– There is no need to make more than one scan of the image, since during a scan, the
associated branches of all scanned pixels have been extracted;

– After a complete scan of the image, there remains no branch, so all shapes of the
image have been extracted.

Example

Figure 3.14 presents an example of execution of the algorithm. Each step presents the
image, the (unknown) inclusion tree, and the part of the inclusion tree currently computed.
The steps are the following:

(a) The original image. The computed tree is initialized with only the root, whose
gray level is unknown.

(b) The first local minimum encountered during the scan is pixel P . The procedure
ExtractBranch is called, it finds the isolevel 2, but it is not a regional extremum, so
it exits. Pixel Q is the next local extremum, this extracts isolevel 5, which is a regional
extremum, but with holes, so continue the scan. The same situation happens for R. S is
the next local extremum. The procedure ExtractBranch first finds the regional extremum

Light version: some figures are not present

3.3. THE FLST 91

at level 5 containing S, it has no hole, so it adds it in the computed tree and removes it
from the image.

(c) ExtractBranch, called from pixel S continues the region growing and extracts the
regional extremum at level 3, without hole, so adds it in the computed tree. When it
grows the region further, it finds the regional extremum at level 2, but with one hole, so
it exits.

(d) The next local extremum met during the scan is T . ExtractBranch finds the
regional extremum at level 1, adds it in the tree, then finds the regional maximum at level
5, which has holes, so exits.

(e) U is the next local extremum, but its component of isolevel is not a regional
extremum. Then V is met, but its associated regional extremum has a hole. On the
contrary, at W a regional minimum without hole at level 0 is extracted.

(f) The region growing initiated at W continues and ExtractBranch finds the regional
maximum at level 4.

(g) ExtractBranch continues the region growing and finds a regional extremum meet-
ing the frame but with area less than half that of the image. So it is a shape. The following
extracted isolevel has a hole, so ExtractBranch exits.

(h) The next non tagged local extremum is X, ExtractBranch finds successively the
inferior shapes at level 1 and 3.

(i) When the region growing continues, ExtractBranch finds the whole image. This
gives the gray level of the root, 5.

3.3.4 Complexity

Comparisons

Basically, finding shapes relies on comparison of values of pixels. That is why the basic op-
eration of the algorithm is the comparison of two pixels, so that our measure of complexity
is the number of comparisons of values of pixels.

It is hard to state precisely the complexity of the algorithm, since we cannot know in
advance how many times a pixel will be compared to its neighbors7. The reason for this
is that it can be the neighbor of many shapes.

To show how the complexity depends on the contents on the image, not only on its
size, we show the results of the following experiment: we started from an image of size
(6000× 500), showed in Figure 3.15, and launched the FLST on extracts of this image of
increasing width, with a step of 100 pixels, always starting from the top left corner. Figure
3.16 shows the number of comparisons w.r.t. the width of the image, and this number
normalized by the number of pixels. Notice the high variation of this normalized number.

7This is likely to be linked to the BV norm of the image. This link would need to be investigated.

Light version: some figures are not present

92 CHAPTER 3. FAST LEVEL SET TRANSFORM

3

4
3 1

2 1

0

R
S

P Q

(b) (c)

(f)

(g)

X

(h)

(a)

UV W

(e)

(i)

T

(d)

PSfrag replacements

≤0

≤0

≤0

≤0≤0≤0

≤0

≤0≤0

≤1

≤1

≤1

≤1

≤1

≤1

≤1

≤1

≤1

≤1≤1

≤1

≤1

≤1

≤1

≤1

≤1

≤1

≤2 ≤2

≤2

≤2≤2≤2

≤2

≤2≤2

≤3

≤3

≤3

≤3

≤3

≤3

≤3

≤3≤3

≥3

≥3

≥3

≥3≥3≥3

≥3

≥3

≥3

≥4 ≥4

≥4

≥4≥4≥4

≥4

≥4≥4

≥5

≥5

≥5

≥5

≥5≥5

≥5

≥5

≥5

5

55

5

5

55

5

55

5

5

?

? ?

??

?

??

Figure 3.14: An example of execution of the FLST. See text for details.

Light version: some figures are not present

3.3. THE FLST 93

In the first 1000 pixels of the width, the image is fairly simple, with large areas of uniform
value, whereas it becomes much more complex, with textures, after.

As a comparison, the FLST of the Lenna image (size 256 × 256) requires 770, 888
comparisons of pixels, which amounts to 11.7 per pixel. Concerning the highly textured
image of carpet shown in Figure 3.17, of size 1024 × 715, the FLST requires 11, 460, 396
comparisons of pixels, that is 15.6 comparisons per pixel.

A good point of comparison is to consider the basic connected components extraction.
To simplify, let us forget the extraction of the holes. The basic algorithm is to apply suc-
cessively each possible threshold to the image and apply each time a linear time algorithm
to extract the connected components of black and white pixels in the binary image. Each
pixel must be compared to its north and west neighbors (and north-east neighbor in case
of 8-connectedness), which amounts to at least 2 comparisons per pixel. The complexity is
thus 2g.N where g is the number of gray levels in the image and N the number of pixels.
It is apparently linear O(N), but with a constant at least 2g before, which can be typically
200, and at most (if all gray levels are used) 2× 256 = 512. This is much higher than our
experimental results with the FLST. Moreover, if gray levels are represented with floating
point values, at worst each pixel has an unique gray level and g = N , therefore the basic
algorithm becomes of complexity O(N2). This complexity makes it too long for practical
applications, whereas the FLST remains as efficient.

Memory access

This complexity measure is not necessarily the best, because there is much more in the
algorithm than just comparisons: especially important are the accesses of memory. Indeed,
each time a new shape is found, its pixels are enumerated to find their largest shape and
put it as a child of the new shape; this involves accessing to shapes via pointers, and these
pointers are not necessarily close in memory, involving what is called memory paging, and
can be very costly. Since pixels belong to several shapes, the number of scans for each pixel
can be important, depending on the depth of the tree at the smallest shape containing
this pixel. The number of such memory accesses is easy to count: it is the sum of the
areas of all the shapes, minus N (the area of the root).

At best, the image is uniform, there is only one shape, and this step has a null com-
plexity. At worst, we can imagine an image where all shapes have only one proper pixel,
so that there are N shapes, and that these shapes are all nested, giving a tree without
ramifications. Thus the number of memory accesses would be:

1 + · · ·+ (N − 1) =
N(N − 1)

2
= O(N2).

This is a very bad performance for the algorithm, as memory accesses can be very time
consuming, much more costly than comparing pixel values, especially if they are encoded

Light version: some figures are not present

94 CHAPTER 3. FAST LEVEL SET TRANSFORM

Figure 3.15: The Spot satellite image (size 6000×500) used to perform the experiments on
the dependence of the number of comparisons in the FLST on the contents of the image.
The image is displayed in 6 parts of width 1000 from left to right and top to bottom.

Light version: some figures are not present

3.3. THE FLST 95

0

1e+07

2e+07

3e+07

4e+07

5e+07

6e+07

0 1000 2000 3000 4000 5000 6000

10

11

12

13

14

15

16

17

18

0 1000 2000 3000 4000 5000 6000

Figure 3.16: Dependence of the number of comparisons of pixel values in the FLST w.r.t.
the contents of the image. Experiment performed on extracts of the satellite image of
Figure 3.15. Top: the number of comparisons of pixels values relative to the width of the
extracted image. Bottom: the same after division by the number of pixels of the extracted
image.

Light version: some figures are not present

96 CHAPTER 3. FAST LEVEL SET TRANSFORM

Figure 3.17: The carpet image, of size 1024× 715.

Light version: some figures are not present

3.4. TAKING ADVANTAGE OF THE TREE STRUCTURE 97

in one byte.
As we can see, the number of memory accesses depends on the contents of the image,

not only on its size, whereas it is bounded by O(N2). Fortunately, usual images do not
present such bad behavior, and the number of memory accesses is much lower than that.

Figure 3.18 shows the number of memory accesses for the Spot satellite image of Figure
3.15, relatively to the width of the subimage. For the Lenna image (256×256), this number
amounts to 4, 084, 219, or 62 memory accesses per pixel. For the carpet image (1024×715),
144, 302, 787, that is, 197 per pixel.

Performances

The best pragmatic measure of the complexity of the FLST is given by the CPU time
used by the algorithm. The tests are performed on a Pentium II processor at 300 MHz,
with 192 MB of RAM, under Linux.

The Lenna image (256× 256) takes 1.5 s, that is, 23µs per pixel. For the carpet image
of Figure 3.17 (1024× 715), 50.8 s, that is, 69µs per pixel. The complexity of this image,
yielding many nested shapes and a very deep tree, makes a real challenge.

As for the Spot image of Figure 3.15, the CPU time and the CPU time per pixel, w.r.t.
the width of the subimage we take, are shown in Figure 3.19.

As can be seen from these experiments, for images of medium size and reasonable
complexity, the computation times make the FLST an algorithm usable in most image
analysis tasks. The name of Fast Level Set Transform is due to these experimentally good
performances, rather than to theoretical complexity, which is unknown.

3.4 Taking advantage of the tree structure

The fact that we have an inclusion tree structure permits to compute with a small amount
of memory or computation time some characteristics of the shapes. We show two examples
of such possibilities. The first one illustrates the economy of memory, the second one of
computation time.

3.4.1 Storage of pixels of the digital shapes

We show here how we can store the pixels of all shapes with a high economy of memory.
The FLST gives for each shape, once it is detected, its list of pixels. But storing for each
one this list would be memory greedy, because shapes can be nested, so that each pixel
appears in different (maybe numerous) lists. This can result in the need of a high amount
of memory, consequently larger than the size of the image, N . We propose instead a
method where each pixel is listed only once.

For this, the shapes need to be enumerated in preorder, meaning that each shape is
enumerated before its children shapes and that siblings are enumerated adjacently (see

Light version: some figures are not present

98 CHAPTER 3. FAST LEVEL SET TRANSFORM

0

5e+07

1e+08

1.5e+08

2e+08

2.5e+08

0 1000 2000 3000 4000 5000 6000

10

20

30

40

50

60

70

80

90

100

110

0 1000 2000 3000 4000 5000 6000

Figure 3.18: Dependence of the number of memory accesses in the FLST w.r.t. the
contents of the image. Experiment performed on extracts of the satellite image of Figure
3.15. Top: the number of memory accesses relative to the width of the extracted image.
Bottom: the same after division by the number of pixels of the extracted image.

Light version: some figures are not present

3.4. TAKING ADVANTAGE OF THE TREE STRUCTURE 99

0

20

40

60

80

100

120

0 1000 2000 3000 4000 5000 6000

1e-05

1.5e-05

2e-05

2.5e-05

3e-05

3.5e-05

4e-05

4.5e-05

0 1000 2000 3000 4000 5000 6000

Figure 3.19: Top: The CPU time of the FLST applied to a subimage of the Spot satellite
image of Figure 3.15, w.r.t. the width of the subimage. The unit of the y axis is the
second. Bottom: The CPU time per pixel, in µs.

Light version: some figures are not present

100 CHAPTER 3. FAST LEVEL SET TRANSFORM

Sedgewick, [82]). This is not the order in which the FLST extracts the shapes. Anyway,
whatever the initial order of the shapes, it is easy and quick to reorder them. This is done
by a recursive procedure, but the non recursive version is also fairly easy to implement,
see Aho et al., [1]. If this enumeration is necessary, its complexity is of the order of the
number of shapes, so at most O(N). We suppose so that the shapes are enumerated in
such an order, name them {T1, . . . , Tk}, where k is the number of shapes such that

1. ∀i, j, Ti ⊂ Tj ⇒ i ≥ j;

2. ∀i, j, l, Ti ⊂ Tl and Tj ⊂ Tl ⇒ ∀m such that i ≤ m ≤ j, Tm ⊂ Tl.

Once this is done, we store for each shape its number of proper pixels. We call the
proper pixels of a shape S the pixels ui whose smallest containing shape Si is S. It was
proved that each shape contains at least one proper pixel. This number is the area of S

minus the sum of the areas of its children, so computed in O(k), which is at most O(N).
We note these numbers pi. The area of the shapes is given by the FLST during extraction
and can be stored, or it can be recovered after extraction (see the following section).

The idea is to enumerate the pixels in an array A with an order induced by the preorder
of the shapes, so that pixels belonging to the same shape are in an interval in A. Then
each shape Ti needs only to store the index Ii of the beginning of the interval in A (and
the length of the interval, that is, the area of the shape). This is explained in Algorithm 5.
Each such interval contains the proper pixels of the shape, then the pixels of its children.
For example, the first p1 pixels are the proper pixels of the root, the following p2 pixels
the proper pixels of the first child of the root, etc. The complexity of this algorithm is
obviously O(k) + O(N) = O(N) and the amount of memory necessary O(N).

Algorithm 5 Efficient storage of the pixels associated to each shape

Require: Ti and pi, for i = 1 . . . k {Shapes in preorder and their number of proper pixels}
Require: Sj , for j = 1 . . . N {For each pixel, its smallest containing shape}

l ← 1 {Initialization of the current index}
for i = 1 to k do {Loop of computation of indices Ii}

Ii ← l
l ← l + pi

end for
Copy Ii in temporary array I ′i {I ′i is the first free place reserved for a proper pixel of Ti}
for j = 1 to N do {Loop of enumeration of the pixels}

i ← index of Sj , such that Sj = Ti {Index of shape pointed to by Sj}
AI′i ← j {Add pixel j in array A}
I ′i ← I ′i + 1 {Increment I ′i}

end for

Light version: some figures are not present

3.4. TAKING ADVANTAGE OF THE TREE STRUCTURE 101

3.4.2 Computation of additive shape characteristics

We can also take advantage of the tree structure to compute some additive characteristics
associated to shapes. We call additive characteristics of a set a real number c such that
for any two sets S1 and S2

S1 ∩ S2 = ∅ ⇒ c(S1 ∪ S2) = c(S1) + c(S2).

Examples of this are numerous. In particular the area, more generally the moments, and
any integral quantity. On the contrary, some other interesting characteristics are not, such
as the perimeter.

We can compute additive characteristics of all the shapes with linear complexity O(N).
This is not straightforward, since shapes can be nested.

The idea is again to use the inclusion tree structure. Assume as in the previous section
that the shapes are enumerated in preorder in an array {T1, . . . , Tk}. Then the algorithm
is in two steps:

1. Compute the characteristics of the set of proper pixels of each shape.

2. Add the characteristic of each shape to the one of its parent.

Indeed, since a shape is composed of its proper pixels union the family of the proper pixels
of all its contained shapes, we are sure we describe all the shape. The method is described
in Algorithm 6. The complexity is evidently of order O(N) additions.

Algorithm 6 Computation of an additive characteristic c of the shapes

Require: {T1, . . . , Tk} {The shapes in preorder}
Require: {S1, . . . , SN} {For each pixel, its smallest containing shape}

ci ← 0 for i = 1 . . . k {Initialization}
for j = 1 to N do {Loop concerning proper pixels}

i ← index of Sj , such that Sj = Ti {Index of shape pointed to by Sj}
ci ← ci + c(j) {c(j) is the characteristic of the set constituted of the pixel number j}

end for
for i = k down to 2 do {The order is important, so the characteristics of children are
computed before the one of their parent}

i′ ← index of parent of Ti

ci′ ← ci′ + ci {Add characteristic of child to characteristic of the parent}
end for

Light version: some figures are not present

102 CHAPTER 3. FAST LEVEL SET TRANSFORM

2

2

1

0

0PSfrag replacements

[u ≥ 1] [u ≤ 1]

Figure 3.20: A configuration where the choice of 4-connectedness for sets and also for
their complement does not yield an inclusion tree of shapes. Left: the image u. Center:
the connected component of upper level set [u ≥ 1] has no hole, it is a shape. Right:
the connected component of lower level set [u ≤ 1] has no hole either, it is also a shape.
Nevertheless, these two shapes intersect without being nested.

3.5 Extensions

3.5.1 Changing connectedness

The algorithm was presented for a discrete image considered as a sampling of a contin-
uous domain image. This allows to use topological results in the plane and translate
them in the discrete framework. In particular, the question of the connectedness is central
in the algorithm. It appeared that using 4-connectedness for one type of level set and
8-connectedness for the other type corresponds implicitly to choosing the associated con-
tinuous domain image upper or lower semicontinuous. However, it is legitimate to wonder
if the use of only one notion of connectedness leads also to an inclusion tree of shapes.

If we work only with k-connectedness (k = 4 or 8), are two intersecting shapes nested?
The shapes in this case are the k-connected components of level sets, union their holes,
where the holes are k-connected components of the complement.

When k = 4, the answer is negative. Figure 3.20 shows a configuration where two
shapes are intersecting, whereas none contains the other one. There is an easy expla-
nation of this fact: the two pointels necessary to the connection of the two 4-connected
components of the isolevel [u = 0] have a value less than 1, so that the connected compo-
nent of upper level set [u ≥ 1] does not connect to the background at level 2. Similarly,
they must have a value more than 1, to prevent the connection with the other connected
component of [u = 0]. The requirements on the values of these pointels are contradictory.
The solution is to remove these pointels from the definition set of the image. That is to say,
considering 4-connectedness for sets as well as for their complement amounts to imagine
the associated continuous domain image defined on Ω̄ minus the junction pointels. The
problem with this definition set is that it is not unicoherent, hindering the representation
of the image as an inclusion tree of shapes.

On the contrary, when k = 8, the answer is, surprisingly, positive. Notice that this
gives a counterintuitive notion of a hole, see Figure 3.21, showing a rectangle having no
interior and exterior, that is, the complement is connected. We shall give a hint of proof.

Light version: some figures are not present

3.5. EXTENSIONS 103

The increasingness of the saturation operator remains true. For two connected com-
ponents of level sets of the same type, if they intersect, one contains the other, and thus
their saturations are nested in the same order. If they do not intersect, they are disjoint,
and each one is included in a hole or the exterior of the other one. The result follows
then easily. In the same manner, if we have one connected component of upper level set
C = cc([u ≥ λ]) and one of lower level set C ′ = cc([u ≤ µ]), if moreover C ∩ C ′ = ∅, the
same proof applies. Notice that until here, all this stands also for all connections in 4-
connectedness. The only remaining case is C∩C ′ 6= 0. This implies µ ≤ λ. If sat(C) = Ωd,
nothing more is to be proved. Otherwise, the set N of 8-neighbors of sat(C) is connected
and in [u < λ] ⊂ [u ≤ µ]. Only two cases are possible:

1. N ∩ C ′ = ∅. Since C ′ is 8-connected and meets sat(C), that implies C ′ ⊂ sat(C),
and therefore sat(C ′) ⊂ sat(C).

2. N ⊂ C ′. We get therefore sat(N) ⊂ sat(C ′). Since sat(C) is a connected component
of Ωd \N , we have either sat(C) ⊂ sat(N), in which case we get sat(C) ⊂ sat(C ′),
or sat(N) ⊃ Ωd \ sat(C), but since sat(C) 6= Ωd, we have sat(Ωd \ sat(C)) = Ωd,
yielding thus sat(N) = Ωd, and therefore sat(C ′) = Ωd ⊃ sat(C).

To allow connection of diagonal neighbors at junction pointels, these junction pointels
must have several values. This shows that there is no associated continuous domain image.
Instead the discrete image has to be thought as the sampling of a multivalued map. But
the theory about an inclusion tree for multivalued images is not done.

The advantage of using only this notion of connectedness is that lower and upper level
sets are considered in the same manner. The tree becomes symmetric. Notice however
that considering only 8-connectedness prevents the local computation of the Euler char-
acteristic, see Kong and Rosenfeld [32]. The consequence is that the algorithm must be
modified in the following way: when a connected component of level set is extracted, to
find if it has a hole, we have to devise a standard extraction of the connected components
of the complement, see Rosenfeld and Pfaltz [71], Lumia et al. [41]. This is an algorithm
of linear complexity, nevertheless this must be done for each connected component of level
set found, so that this step becomes the bottleneck of the whole process.

3.5.2 Higher dimension

The FLST can be generalized nearly straightforwardly in higher dimension. The only
delicate point concerns the determination of whether a connected component of level set
has some hole or not. This is again locally computable, but the different configurations of
the neighborhood, of number 256 for 2-D images, becomes 23n−1 (n being the dimension),
thus they cannot be hard coded as soon as n ≥ 3. Nevertheless, the identification of the
configuration is not really more difficult.

Light version: some figures are not present

104 CHAPTER 3. FAST LEVEL SET TRANSFORM

Figure 3.21: When we consider 8-connectedness for a set and its complement, the gray
pixels compose a rectangle, but the complement is connected, so that there is no hole.
This gives a notion of hole contrary to intuition.

In 3-D in particular, we would consider 6-connectedness for lower level sets, and 26-
connectedness for upper level sets (or the converse). Alternatively, we could consider 26-
connectedness for both (but not 6-connectedness) and have an inclusion tree of shapes (the
proof concerning 8-connectedness in the previous section stands also in higher dimension
for (3n − 1)-connectedness). But again, the notion of hole becomes not really intuitive,
and the Euler characteristic is not locally computable. It can be computed as exposed by
Lee, Poston and Rosenfeld [36], Lee and Rosenfeld [37], Lumia [40].

Light version: some figures are not present

Chapter 4

Applications to Some

Morphological Filters

In this chapter, we explain how the inclusion tree of shapes plays a role in an interesting
morphological filter, the grain filter, and introduce an adaptive quantization of the image,
which is a particular shock filter (see Osher and Rudin [64]), based on the inclusion tree.
Some of these applications and experiments were presented in [59] and [58].

4.1 Morphological Filters

Since contrast information is in most part irrelevant, the filters applied to images must be
insensitive to a change of contrast, hence the need of morphological filters. For instance,
one of the earliest morphological filters is the famous median filter, see Huang et al.
[28]. Matheron [50] has a representation theorem for translation invariant set operators,
and after him Maragos and Shafer [44, 45] make the link between contrast invariant and
monotone operators on functions and monotone set operators. They show the equivalence
of both. With any morphological filter, a monotone set operator is associated, in the
sense that the level sets of the filtered image are the level sets of the original image after
transformation by the set operator. Conversely, from a monotone set operator we can
construct a morphological filter such that the same property stands. Moreover, it allows
to give a general form of morphological filters:

Tu(x) = sup
B∈Bx

inf
y∈B

u(y)

where Bx is a family of set depending on x, and if moreover the filter is translation
invariant, we can write

Bx = B + x,

where B is a family of sets independent of x.

105 Light version: some figures are not present

106 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Alvarez et al. [3] give a complete classification of regular morphological filters. They
show that to each regular morphological filter is associated an evolution by a partial
differential equation (PDE). For instance the median filter of parameter t0 corresponds to
the solution u(., t0) of the parabolic equation:

∂u

∂t
(x, t) = |Du|(x, t) curv u(x, t),

with initial condition u(., 0) = u(.), where Du is the gradient of u and curv u is the
curvature of the level line passing by x, that is div Du

|Du| . The global geometric invariance
of the family of sets B is equivalent to the same geometric invariance of the morphological
filter, this allows Catté et al. [14] to propose a contrast invariant scheme for this mean
curvature motion.

The classification of [3] allows the authors to present the only regular, affine invariant,
morphological filter, whose associated PDE is:

∂u

∂t
= |Du|(curv u)1/3.

The associated curve evolution operator was discovered independently at the same time by
Sapiro and Tannenbaum [81]. A geometrical scheme was later discovered by Moisan [56].
It appears that this filter, called the Affine invariant Morphological Scale-Space (AMSS),
is not invariant under projective transform, and that no more geometrical invariance can
be reached. Therefore, in order to reach projective invariance, Faugeras and Keriven [20]
have to drop the maximum principle requirement, implying numerical instability of the
resulting filter. Among regular filters, the most invariant filter is therefore the AMSS.

A new kind of morphological filters, dropping the regularity condition, and motivated
by the study of some stack filters, see Salembier [73], was presented by Serra and Salembier
in [85, 80]. They call them the connected filters. They are based on flat zones, that is
the connected components of isolevels, and constructed by merging some of them which
are adjacent, giving to their union the gray level of one of the flat zones from which it is
constructed. This stimulated the discovery of numerous interesting filters for image and
sequence processing, see Salembier [74], Salembier and Garrido [76], Salembier, Oliveras
and Garrido [78], of a motion estimation algorithm, see Salembier and Sanson [79], and
of an image compression algorithm, see Salembier et al. [75, 77]. The connected filters
have the attractive feature of conserving the edges and T-junctions in the image without
displacing them.

These articles are particularly interesting with respect to our work, since they rely on
manipulations of a tree. Indeed, the image is partitioned into its connected components of
isolevels, and a segmentation by merging of such regions is defined. The restriction is that
at each step only two regions merge, and the merging process is continued until there is
only one region left, the entire image. The steps of this segmentation can be represented

Light version: some figures are not present

4.2. GRAIN FILTER 107

by a binary inclusion tree. Notice that the construction of the inclusion tree follows very
closely these lines, except that at each step multiple regions can merge: first the regional
extrema without holes are merged and so on.

The filters proposed by Salembier and coauthors rely on the reconstruction of the
image after the removal of the some nodes in the tree, based on some criterion. In [76],
the monotone criteria are presumed more robust, but the authors explain how a non
monotone criterion can nevertheless be transformed into a monotone one: a modification
of the criterion is made in a manner so as to contradict the conservation or the removal of
nodes a minimum of times; a dynamical programming algorithm allows such a modification
of the criterion. In other words, they claim that only the filters corresponding to a pruning
of the tree are stable. In this manner, even filters insensitive to a negative of the images
are designed. However, all these filters rely on some previous segmentation, and this
segmentation must be morphological in order that the filter be morphological. In this
thesis, the segmentation is given by the construction of the inclusion tree of shapes.

Remarking that the connected filters represent a wide class of filters, Meyer [51, 52]
distinguishes among them the ones that preserve the order of gray levels of neighbor
pixels, which he calls monotone planings, and specializes even more into levelings, filters
that satisfy the following condition, particularly elegant in simplicity and concision: g is
a leveling of the image f if for any neighbor pixels P and Q, g(P) > g(Q) ⇒ f(P) ≥
g(P) > g(Q) ≥ f(Q). Meyer and Maragos give examples of scale-space based on levelings
in [53, 43].

A particularly interesting kind of leveling, is the area opening and the area closing,
see Vincent [88, 89]. Indeed, they are morphological filters, sup inf and inf sup with as
structural elements B the family of connected sets of a given area t containing the origin
O. The area opening flattens the maxima of insufficient area whereas the area closing
flattens the minima of insufficient area. The filtered images have regional maxima (resp.
minima) of area at least t after the area opening (resp. closing). Ballester et al. [5] study
in a continuous framework the maximal monotone sections of an image being filtered by
area opening and area closing.

4.2 Grain Filter

Following the direction of Vincent, Masnou in [49] proposes a way to avoid the drawbacks
of Vincent’s area opening and closing, namely that each one deals with its specific type of
extrema. The solution of Masnou is based on the inclusion of the interiors of level lines,
understood as Jordan curves, the proposed filter is called the grain filter. However, it is
not true that the boundaries of level lines are made of disjoint Jordan curves. Trying to
have nevertheless a rigorous justification for the grain filter, Ambrosio et al. [4] develop a
new notion of connectedness for level sets of an image of bounded variation (BV). For a
definition of BV functions, see Evans and Gariepy [18]. In their framework, connectedness

Light version: some figures are not present

108 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

is adapted to BV functions, which are defined up to a null measure set. They show that
with their definition, the boundary of a connected component of level set is composed of a
countable or finite number of disjoint (in the measure theoretical sense), rectifiable Jordan
curves, and Masnou in [48] was able to prove the essential property of the grain filter, its
invariance with contrast inversion, for smooth functions (of class Cn in Rn) which, after
some contrast change, are in the BV class, called of weak bounded variation (WBV).
Ballester et al. were able to extend the same result for continuous functions in WBV.

Whereas the BV framework is powerful for the study of filters, see in particular Rudin,
Osher and Fatemi [72], there are clues letting think that natural images do not enter in
the BV framework, see Alvarez, Gousseau and Morel [2].

In this section, we reformulate the grain filter as a classical sup inf operator acting
on upper semicontinuous functions, and show the invariance relatively to an inversion of
contrast for continuous functions. The notion of connectedness is the classical topological
one; we do not work in the BV framework. Up to this difference, it is an extension of the
previously mentioned results.

4.2.1 Description

The grain filter is a variant of the area opening and the area closing that avoids the draw-
backs of these levelings: they are different and do not commute. In particular, that means
that these filters deal differently with upper and lower level sets. As often explained in the
previous chapters, equal treatment of upper and lower level sets is the main motivation
of this thesis. The grain filter is designed so as to operate on shapes, not directly on con-
nected components of level sets. Roughly, the grain filtered image of area t of the image
u is obtained by the following process: it is the image whose shapes are the shapes of u of
measure not less than t. In other words, the inclusion tree of the grain filtered image of
u, Ttu, is the inclusion tree of u in which all nodes of area less than t are pruned.

Notice the close relation to area opening and closing: the area opening (resp. closing)
of the image u is the image whose upper (resp. lower) level sets are composed of the
connected components of upper (resp. lower) level sets of u of area not less than t.
Nevertheless, area opening and closing do not take into account the notion of inclusion,
see Figure 4.1.

As shapes are morphological features, this filter is contrast invariant, and given that
shapes are insensitive to inversion of contrast, we expect this filter to be self dual. We
shall show these properties after having defined properly the grain filter. We give two
versions of the grain filter: the set operator and the function operator.

The set operator

Since we will apply the grain filter to upper semicontinuous images, whose upper level sets
are closed, the set operator corresponding to the grain filter is defined on closed sets.

Light version: some figures are not present

4.2. GRAIN FILTER 109

Figure 4.1: Difference between area opening or closing, and grain filter. Left: Original
image. Top row: scale-space of the image through alternate area opening and closing; the
black ring being smaller than the white disk, it disappears before the disk. Bottom row:
scale-space of the image through the grain filter; the black ring is considered as a black
disk occluded by the white disk, so it contains the white disk and disappears after it.

Definition 4.1 For a real number t > 0, we define the set operator Tt, mapping closed
subsets of X to subsets of X by:

∀F closed ⊂ X, Tt(F) =
⋃{

sat(C) \ C ′ : C = cc(F), µ(sat(C)) ≥ t,

C ′ hole of C, µ(C ′) > t
}
.

Notice the close relationship with equalities in corollary 2.41, giving the reconstruction
of a level set of an image from its shapes.

The function operator

As any morphological filter, it can be formulated as an inf sup or sup inf operator, and as
in the case of area opening and closing, the structuring elements can be taken indepedently
of u. It has to be understood that although these elements are independent of u, the result
is determined uniquely by the shapes of u, and we can as well have taken shapes of u as
structuring elements. This formulation, independent of u, allows one to prove more easily
the properties of this filter.

Definition 4.2 The structuring elements of the grain filter of area t, whose family is
noted Bt, are the sets B satisfying:

1. B is connected and closed;

2. 0 ∈ sat(B);

3. µ(sat(B)) ≥ t;

4. 0 6∈ B ⇒ µ
(
cc(X \B,0)

) ≤ t.

The grain filter of area t > 0 applied on the image u is defined by:

Tt u (x) = sup
B∈Bt

inf
y∈x+B

u(y). (4.1)

Light version: some figures are not present

110 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

The fourth property satisfied by elements of Bt is that if the origin 0 is in a hole, this hole
is of area not more than t.

That this function operator Tt is associated to the set operator Tt of Definition 4.1
will be shown later, after having proved that the set operator is monotone and upper
semicontinuous.

4.2.2 Link between set operator and function operator

Let us examine the effect of the grain filter on the level sets of an upper semicontinuous
image u. It is supposed that we are in the framework of section 2.5, i.e., either X = Rn

and the image u is constant outside some bounded set, or X is the closure of a Jordan
domain.

We shall prove that the upper level sets of Ttu are the images of the upper level sets
of u through the set operator Tt. In other words,

∀λ ∈ R, [Ttu ≥ λ] = Tt([u ≥ λ]). (4.2)

This is classically done in three steps:

1. Tt is monotone: A ⊂ B ⇒ Tt(A) ⊂ Tt(B);

2. Tt is upper semicontinuous: for any nonincreasing sequence of compact sets Fn,
Tt(

⋂
n Fn) =

⋂
n Tt(Fn);

3. Bt = {F : 0 ∈ Tt(F)}.

The third point is not exactly true, we have only an inclusion, however, it will be sufficient
for our purpose.

Before all this, the first thing to prove is that Tt maps a compact to a compact.

Proposition 4.3 For the saturation operators of Formulas (2.4) and (2.5), Tt maps com-
pact sets to compact sets.

Proof.
1. Consider a sequence of points xn in Tt(K) where K is a compact set. Suppose this

sequence converges to x ∈ X. We shall show that x ∈ Tt(K). This will prove that Tt(K)
is closed, and since it is obviously bounded, the result will be proved.

2. Each xn belongs to some component Tt(Kn) of Tt(K) (see Lemma 4.4, below), Kn

being a connected component of K. Suppose the family of the Tt(Kn) is actually finite
for n ∈ N. Then we can extract a subsequence such that all elements belong to Tt(Kn)
and Tt(Kn) is closed (its complementary is the exterior of Kn union some holes, all these
sets are open), so x ∈ Tt(Kn). For the remaining of the proof, we will suppose the Tt(Kn)
are infinite.

Light version: some figures are not present

4.2. GRAIN FILTER 111

3. It is clear that sat(Tt(Kn)) = sat(Kn). Only a finite number of them can be two by
two disjoint, since each has area at least t. Thus we can suppose they all intersect (maybe
extracting a subsequence), so they form either a decreasing or an increasing sequence of
sets (after a possible new extraction of subsequence).

4. If the sat(Kn) are decreasing, their intersection is a set sat(K ′), where K ′ is a
connected component of K and µ(sat(K ′)) ≥ t, by Theorem 2.39. It is easy to see that x
belongs to ∂sat(K ′) = ∂K ′ ⊂ K ′ ⊂ Tt(K ′).

5. If the sat(Kn) are increasing, the inf limit of the Kn is not empty (because it
contains x), so their sup limit is a continuum, included in K, by Zoretti theorem (see
exact formulation in [35]). Let K ′ the connected component of K containing it. All
the sat(Kn) belong to the same connected component C of X \ K ′. So this connected
component is of area at least t. We will show that it is a hole of K ′ (in other terms, not
its exterior), proving that sat(K ′) is of area at least t, and therefore that Tt(K ′) 6= ∅, so
x ∈ Tt(K).

6. This last point relies on the particular form of the saturation operator we use. If
X = Rn, since the Kn are bounded, each one is separated from a neighborhood of infinity
by K ′, so that they are included in a hole of K ′. If X is the closure of a Jordan domain,
if K ′ does not meet the frame, the demonstration is similar to the case Rn. If K ′ in
contained in K ′, sat(K ′) = X and the result is also obvious. If K ′ meets the frame but
does not contain it, if none of the sat(Kn) meets the frame, their union, C, neither. Thus
C is a hole of K ′. If some sat(Kn) meets the frame, each subsequent sat(Kn) also. Since
none is X, it implies their area is at most half the image. We conclude that C, whose area
is the supremum of the areas of the sat(Kn), has also an area not larger than t. Thus C

cannot be the exterior of K ′. ¤

Tt is monotone

Consider two closed sets A and B such that A ⊂ B. Then the connected components of
A are included in connected components of B. If C is a connected component of A whose
saturation is of area not less than t, there is a connected component C ′ of B containing
C, and sat(C ′) has area not less than t since it contains sat(C). If H ′ is a hole of C ′ of
area larger than t, H ′ is a connected component of X \ C ′ which is included in X \ C.
Thus H ′ is included in a connected component H of X \ C, and µ(H) > t. Thus

sat(C) \H ⊂ sat(C) \H ′. (∗)

H can be a hole of C or the exterior of C. In all cases, we have Tt(A) ⊂ sat(C) \H, and
inequality (∗) yields

Tt(A) ⊂ sat(C) \H ′.

Light version: some figures are not present

112 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Taking the intersection of the sat(C) \H ′ over all H ′ holes of C ′ and of area more than t,
we get Tt(A) ⊂ Tt(B). Tt is thus proved to be monotone.

Tt is upper semicontinuous

If (Fn)n∈N is a nonincreasing sequence of closed sets, their intersection F is closed, so
that Tt(

⋂
n Fn) is defined. Since for any n ∈ N, F ⊂ Fn, and since Tt is monotonous,

Tt(F) ⊂ ⋂
n Tt(Fn).

For the converse inclusion, we need an additional hypothesis: If none of the Fn is
bounded, F contains a neighborhood of infinity, i.e., the complementary of a compact set.
This is not restrictive for our purpose. Indeed, if X is the closure of a Jordan domain, there
is no additional hypothesis, and if X = Rn, we work on images constant in a neighborhood
of infinity, so that its nonbounded level sets contain a common neighborhood of infinity.
In this case, this neighborhood contains a band B = {x : a ≤ ‖x‖ ≤ b} of area t; if we
substitute to a nonbounded Fn the set Fn ∩ {x : ‖x‖ ≤ b}, the nonbounded connected
component of Fn is the component of Fn ∩{x : ‖x‖ ≤ b} that meets {x : ‖x‖ = b}, union
{x : ‖x‖ > b}. This component of Fn∩{x : ‖x‖ ≤ b} is connected and of area larger than
t, so that in what follows, we can suppose that all Fn are compact.

The following lemma will be used several times:

Lemma 4.4 If F ⊂ X is compact and (Ci)i∈I are its connected components, then

Tt(F) =
⋃
i∈I

Tt(Ci).

∀i ∈ I, Tt(Ci) is either empty or a continuum and the connected components of Tt(F) are
the non empty Tt(Ci).

Proof.
1. Since Tt is monotone and ∀i ∈ I, Ci ⊂ F we have⋃

i∈I

Tt(Ci) ⊂ Tt(F).

2. Conversely, if x ∈ F , we have by Definition 4.1 an i ∈ I such that x is in sat(Ci),
whose area is larger than t, but not in a hole of area larger than t of Ci. Thus x ∈ Tt(Ci).

3. Let i, j ∈ I, i 6= j. Suppose that Tt(Ci) ∩ Tt(Cj) 6= ∅. This implies sat(Ci) ∩
sat(Cj) 6= ∅. If we consider the characteristic function of F , u = χF , sat(Ci) and sat(Cj)
are shapes of χF , thus they are nested. Suppose for example sat(Ci) Ã sat(Cj). Let
x ∈ ∂sat(Ci). Thanks to Lemma 2.36, there is some shape sat(cc([u < 1],y)) such that

x ∈ sat(cc([u < 1],y)) Ã sat(Cj).

Light version: some figures are not present

4.2. GRAIN FILTER 113

Since ∂sat(Ci) is connected and inside F , it is included in a hole of cc([u < 1],y), thus
its saturation, which is sat(Ci) is included in the same hole. Besides, cc([u < 1],y) is a
connected component of X \ F , thus it is included in a hole H of sat(Cj). This yields:
Tt(Ci) ⊂ sat(Ci) ⊂ H and µ(H) > µ(sat(Ci)) ≥ t, since H \ sat(Ci) is open, so that it
contains a open ball, whose area is not null. Therefore Tt(Ci) ∩ Tt(Cj) = ∅, contrarily to
the hypothesis.

4. Tt(Ci) is closed because it is equal to Ci (or ∅ if µ(Ci) ≤ t) minus a union of open
sets. Since it is included in a compact (sat(F)), it is compact. Tt(Ci) is the union of Ci

and some connected components of its complementary (those of area less than t). Thus it
is connected.

5. Consider a subset J ⊂ I such that ∀j ∈ J , Tt(Cj) 6= ∅. We prove that if the cardinal
of J is at least 2, D =

⋃
j∈J Tt(Cj) is not connected. Since D′ =

⋃
j∈J Cj is not connected,

there is an open and closed subset E′ in D′ different from ∅ and D′. E′ is an union of Cj

(since each one is connected), thus let us write

E′ =
⋃

k∈K

Ck,

with ∅ 6= K Ã J . Let
E =

⋃
k∈K

Tt(Ck).

We shall show that E is open and closed in D, this will prove that D is not connected,
and thus that the connected components of Tt(F) are the non empty Tt(Ci).

6. It is clear that ∅ 6= E Ã D. There is an open set U ′ of X such that U ′ ∩D′ = E′.
Let U = U ′′ ∪ E, where U ′′ is the union of the connected components of U ′ that meet
some Ck, k ∈ K. Then U is open in X, since it can be written as U ′′, which is a union of
open sets, namely connected components of U ′ (since X is locally connected), union some
holes of the Ck, which are all open. Moreover, if j ∈ J \K, we have Tt(Cj) ∩E = ∅, and
also Tt(Cj) ∩ U ′′ = ∅: assume this is not the case,

Tt(Cj) ∩ U ′′ 6= ∅. (∗)

There is a connected component O of U ′ meeting some Ck, k ∈ K (by definition of U ′′),
and Cj . Indeed, if it meets some hole H of area less or equal t of Cj , H does not contain
Ck, otherwise since H \ sat(Ck) is open and not empty, thus of non null measure, it would
imply µ(H) > µ(sat(Ck)) ≥ t. Thus O is connected and meets two different connected
components of X \ Cj (H and the one containing Ck), thus O ∩ Cj 6= ∅. This implies
U ′ ∩ Cj 6= ∅, contradicting the fact that U ′ ∩D′ = E′. Thus (∗) does not stand, and we
conclude Tt(Cj)∩U ′′ = ∅, and therefore U ′′ ∩ (D \E) = ∅, proving U ∩D = E, thus E is
open in D.

7. Applying the same argument to D \E instead of D proves that E is closed in D. ¤

Light version: some figures are not present

114 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

We proceed with the proof of semicontinuity of Tt. Let x ∈ ⋂
n Tt(Fn). For each n, x

belongs to some (unique) sat(Cn), where Cn is a connected component of Fn, µ(sat(Cn)) ≥
t, and not to a hole of Cn of area larger than t. For n ≥ 1, Cn is included in some
connected component C of Fn−1 and Tt(Cn) ⊂ Tt(C). Therefore Tt(C) ∩ Tt(Cn−1) 6= ∅
and due to Lemma 4.4, we get C = Cn, and therefore the sequence of continua (Cn)n∈N
is nonincreasing.

So their intersection C is a continuum by Zoretti theorem. We claim that x ∈ Tt(C).
Indeed, if x belongs to C, it is obvious, and if x belongs to a hole H of C, there is an N

such that x does not belong to Cn for any n ≥ N . If for some such n0, x belonged to
the exterior of Cn0 , since the exterior of C contains the exterior of Cn0 , it would be in the
exterior of C. Thus x belongs to a sequence of holes Hn in Cn for n ≥ N . We show now
that H =

⋃
n≥N Hn. Since C ⊂ Cn, we get Hn ⊂ H, so that

H ⊃
⋃

n≥N

Hn.

Let y ∈ ∂
⋃

n≥N Hn, U a neighborhood of y and V a connected neighborhood of U such
that V̄ ⊂ U and V̄ is compact. Expressing that y ∈ ⋃

n≥N Hn, we have:

∃n0 ≥ N, Hn ∩ V 6= ∅

and by monotonicity of Hn,

∀n ≥ n0, Hn ∩ V 6= ∅. (∗)

Expressing that y ∈ ⋂
n≥n0

X \Hn,

∀n ≥ n0, V ∩ X \Hn 6= ∅. (∗)

From assertions (∗) and (∗), the connectedness of V yields

∀n ≥ n0, V ∩ ∂Hn 6= ∅.

Since ∂Hn ⊂ Cn, we get V ∩ Cn 6= ∅ and thus V̄ ∩ Cn 6= ∅ for n ≥ n0. Since V̄ ∩ Cn is
closed in the compact V̄ , it is compact, and by completeness of X, we get V̄ ∩ C 6= ∅, so
that U ∩ C 6= ∅. Since this is valid for any neighborhood of y, y ∈ C̄ = C. This proves
that

∂
⋃

n≥N

Hn ⊂ C

and since C ∩H = ∅, (∂
⋃

n≥N Hn) ∩H = ∅. Thus
⋃

n≥N Hn is closed in H and since it

Light version: some figures are not present

4.2. GRAIN FILTER 115

is open in H (union of open sets), the connectedness of H implies

H =
⋃

n≥N

Hn.

Since x ∈ Tt(Cn), it follows that µ(Hn) ≤ t, and therefore µ(H) = µ(
⋃

n≥N Hn) ≤ t,
so that x ∈ Tt(C), and since C ⊂ F , we have x ∈ Tt(F).

Bt is a basis of {F : O ∈ Tt(F)}

This means that each element of Bt is in {F : O ∈ Tt(F)} and that each element of
{F : 0 ∈ Tt(F)} contains an element of Bt. The first assertion is a direct consequence of
the definition of Tt, and the second one comes from the fact that if O ∈ Tt(F), there is a
connected component C of F containing O or O is in a hole of C of area not more than
t, expressing that C ∈ Bt.

Link between set and function operators

If we note Ft = {F : O ∈ Tt(F)}, the first two points show, thanks to Maragos theorem:{
x ∈ X, sup

B∈Ft

inf
y∈x+B

u(y) ≥ λ
}

= Tt([u ≥ λ])

and since Ft ⊃ Bt,
sup

B∈Ft

inf
y∈x+B

u(y) ≥ Ttu

and if B ∈ Ft, ∃B′ ∈ Bt such that B′ ⊂ B, we have

inf
y∈x+B

u(y) ≤ inf
y∈x+B′

u(y)

and the right hand side is not more than Ttu (x), so that

sup
B∈Ft

inf
y∈x+B

u(y) = Ttu (x).

This shows that the upper level set λ of Ttu is the image under the set operator Tt of the
upper level set λ of u.

4.2.3 Properties

In this section, we examine the properties of the grain filter defined in Equation (4.1).

Light version: some figures are not present

116 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Monotone

This is the well known global comparison principle: if u ≤ v, Ttu ≤ Ttv. This follows
easily from the increasingness of Tt:

[Ttu ≥ λ] = Tt([u ≥ λ]) ⊂ Tt([v ≥ λ]) = [Ttv ≥ λ].

Contrast invariance

If g is a non decreasing, upper semicontinuous real function,

∀t g ◦ Tt = Tt ◦ g.

Notice that g does not need to be increasing, that is flat zones are allowed. This is contrast
invariance in a strong sense: g need not be continuous, nor increasing.

This property is the direct consequence of the already proved equality

∀λ, [Ttu ≥ λ] = Tt([u ≥ λ]),

since

[g ◦ Tt u ≥ λ] = [Ttu ≥ g(−1)(λ)] = Tt([u ≥ g(−1)(λ)] = Tt([g ◦ u ≥ λ]) = [Tt ◦ g u ≥ λ].

Special affine invariance

The operator commutes with all special affine transforms. That means that if A is an
affine transform of determinant 1, that is an area preserving affine transform,

Tt (u ◦A) = (Ttu) ◦A.

This follows from the fact that if L is the linear part of A, L is continuous and area
preserving, so that it maps a connected set into a connected set of same area. The
consequence is

B ∈ Bt ⇔ L(B) ∈ Bt

and S is a shape of u if and only if L(S) is a shape of u ◦ L.
We can also extend this property to deal with affine transforms which are invertible,

but not necessarily area preserving. If A is such an affine transform, a connected set of
area a is transformed into a connected set of area a× |det A|. This yields easily:

∀A ∈ GA(Rn), Tt(u ◦ A) = (Tt/| det A|u) ◦ A.

This property could probably be generalized to more general transforms: suppose
we replace the measure µ with a non decreasing map Φ from subsets of X (partially

Light version: some figures are not present

4.2. GRAIN FILTER 117

ordered by occulusion) to R with some regularity: If the Xn are nondecreasing, Φ(
⋃

Xn) =
supn Φ(Xn); if we have a group of continuous transforms G of X such that Φ(G(C)) =
Φ(C) for any C ⊂ X, then Tt would be invariant w.r.t. any transform in G. We could for
example imagine to extend this property to projective transforms, although this requires
to find a nondecreasing Φ. The existence of such a Φ is an open question.

No regularity

This means that the grain filter is not governed by a PDE, or in other words that we cannot
talk about the infinitesimal evolution of u through Tt. According to the classification done
by Alvarez et al. in [3], there is only one regular, morphological and special affine invariant
scale-space: the so called AMSS (Affine Morphological Scale-Space). The property the
grain filter does not share with the AMSS is the regularity. Actually, if we could talk
about asymptotic evolution through Tt, it would be governed by the trivial equation

∂u

∂t
= 0.

Indeed, suppose that u is C2, and x a point where ∇u(x) 6= 0. Then

∃t > 0, ∀h ≤ t, Thu(x) = u(x).

Since u is C2, then the gradient of u does not vanish in a neighborhood U of x. Thus
the set U \ [u = u(x)] has two connected components U ∩ [u > u(x)] and U ∩ [u < u(x)],
maybe after reducing the open set U . These two connected components are open, so they
have non zero measure, we take as t the minimum of these areas, minus some small ε > 0.
Thus cc([u ≥ u(x)],x) has area at least t, so that x ∈ [Thu ≥ λ]. On the other hand,
x does not belong to [Thu ≥ µ] for µ > λ, because if it is in a hole of some connected
component of [u ≥ µ], this hole would contain U ∩ [u < λ], so that it would be of area at
least t.

Causality

The scale-space based on the grain filter is causal. That means that each scale can be
deduced from any anterior scale by a transition operator. This also means that no infor-
mation is introduced, yielding a scale-space, as illustrated in the classical scheme of Figure
4.2:

∀s, t, s ≤ t, ∃Tt,s s.t. Tt = Tt,s ◦ Ts.

In this case, the transition operator has a very particular form, it is the operator itself:
Tt,s = Tt.

Light version: some figures are not present

118 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

S
p

a
ce

Scale

0 s t

PSfrag replacements

Ts,0 = Ts

Tt,s

Tt,0 = Tt

Figure 4.2: The classical scheme of a scale-space derived from a causal filter. Each vertical
line represents the image (the space) at a certain scale. The image at scale s (resp. t) is
obtained from the image at scale 0 through the operator Ts (resp. Tt). Alternatively, the
image at scale t can be obtained from the image at scale s through the transition operator
Tt,s.

This amounts to show, that for each λ,

[Ttu ≥ λ] = [Tt ◦ Tsu ≥ λ]

or equivalently
Tt([u ≥ λ]) = Tt ◦Ts([u ≥ λ]).

Let us discriminate the connected components of [u ≥ λ] into three parts:

[u ≥ λ] =
⋃
i∈It

Ci ∪
⋃
i∈Is

Ci ∪
⋃
i∈I0

Ck

where µ(sat(Ci)) ≥ t if i ∈ It, s ≤ µ(sat(Ci)) < t if i ∈ Is, and µ(sat(Ci)) < s if i ∈ I0.
Thanks to Lemma 4.4, we can write:

Ts([u ≥ λ]) =
⋃
i∈It

{
sat(Ci) \

⋃
H, H hole of Ci, µ(H) ≤ s

}
∪

⋃
i∈Is

{
sat(Ci) \

⋃
H, Hhole of Ci, µ(H) ≤ s

}
,

the terms of these unions being the connected components. Again thanks to Lemma 4.4,
the effect of Tt on this set is the union of the images under Tt of each component. If
i ∈ Is, we get

sat(sat(Ci) \
⋃

H) ⊂ sat(sat(Ci)) = sat(Ci),

Light version: some figures are not present

4.2. GRAIN FILTER 119

so that its measure is less than t, and

Tt(sat(sat(Ci) \
⋃

H)) = ∅.

If i ∈ It, we have
sat(sat(Ci) \

⋃
µ(H)>s

H) = sat(Ci)

and thus of area at least t. The holes of sat(Ci) \
⋃

H are precisely the H, holes of Ci, of
area at least s. The ones that are filled with Tt are those of area at most t. Therefore

Tt(sat(Ci) \
⋃

µ(H)>s

H) = Tt(sat(Ci) \
⋃

µ(H)>t

H)

and taking the union over all i ∈ It, we get:

Tt([u ≥ λ]) = Tt ◦Ts([u ≥ λ]),

the announced result.

Idempotent

A consequence of the particular form of the transition operator is, by taking s = t,
Tt,t = Tt, so that

Tt = Tt ◦ Tt

i.e., Tt is idempotent.

This distinguishes strongly the grain filter (this property stands also for area opening
and area closing) from any regular scale-space: in the latter case, iterating several times
the filter simplifies all the more the image and is equivalent to applying the filter at some
larger scale (semi-group structure), whereas in the former case, it has no effect.

Self duality

Arguably the most interesting advantage of the grain filter over the other morphological
filters is its self duality. This property is very important: it means that dark objects are
dealt with in the same manner as light ones. This can be expressed in two equivalent
manners: if u is a continuous function,

Tt(−u) = −Tt(u) (4.3)

Light version: some figures are not present

120 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

1

1.5 1.5
C

O

O

C

Figure 4.3: The result of alternating area closing and area opening on a function depends
on the order we apply the operators. Left: original function. Top: We apply first the area
opening O2 then the area closing C2. Down: We apply first the area closing C2 and then
the area opening O2. The zones where the function becomes constant are rounded.

or equivalently

sup
B∈Bt

inf
y∈B

u(y) = inf
B∈Bt

sup
y∈B

u(y). (4.3′)

It is simultaneously an opening and a closing. That these properties are equivalent is easy
to show:

(4.3) ⇔ sup
B∈Bt

inf
y∈B

(−u(y)) = − sup
B∈Bt

inf
y∈B

u(y)

⇔ − inf
B∈Bt

sup
y∈B

u(y)

⇔ (4.3′).

Remark 4.1. This self duality does not stand for area opening and closing: area closing
acts on maxima, whereas area opening on minima. To act on both, Vincent proposes to
alternate the area closing Ct and the area opening Ot, that is to apply Ct ◦Ot or Ot ◦Ct.
Unfortunately, these two operators are different, as shown in Figure 4.3.

We shall prove Equation (4.3). We transform this equation into the equivalent one:

Lemma 4.5 Equation (4.3) is equivalent to

∀λ ∈ R, Tt([u ≤ λ]) = [Ttu ≤ λ] (4.4)

Proof. Writing Equation (4.4) for −λ instead of λ, we get

∀λ ∈ R, Tt([−u ≥ λ]) = [−Ttu ≥ λ],

and from the contrast invariance of Tt:

∀λ ∈ R, ([Tt(−u) ≥ λ]) = [−Ttu ≥ λ].

Light version: some figures are not present

4.2. GRAIN FILTER 121

That is to say that the upper level sets of Tt(−u) and −Ttu are the same, meaning Equa-
tion (4.3). ¤

Consider λ, µ ∈ R such that λ < µ.
Obviously, [u ≤ λ]∩[u ≥ µ] = ∅. If C and C ′ are connected components of, respectively,

[u ≤ λ] and [u ≥ µ], thanks to Lemma 2.21, sat(C) and sat(C ′) are either nested or disjoint.
Consider the case where they are nested.

Suppose first that sat(C) ⊂ sat(C ′). Then C is in a hole H of C ′. If µ(sat(C)) ≥ t, we
have µ(H) ≥ t, and since C is closed (remember that u is supposed continuous), H \ C

is open and non empty, so it contains a ball, whose area is strictly positive. This implies
µ(H) > t.

Suppose now that sat(C ′) ⊂ sat(C). In the same manner as above, if µ(sat(C ′)) ≥ t,
it is included in a hole H of C and µ(H) > t.

We deduce from these considerations

Tt([u ≤ λ]) ∩ Tt([u ≥ µ]) = ∅.

Since Tt([u ≥ µ]) = [Ttu ≥ µ], taking the union over all µ > λ, we deduce

Tt([u ≤ λ]) ∩ [Ttu > λ] = ∅

and therefore Tt([u ≤ λ]) ⊂ [Ttu ≤ λ].
It remains to show the converse inequality, which demands more work. It can be

written
(X \ Tt([u ≤ λ])) ∩ [Ttu ≤ λ] = ∅

or equivalently
Tt([u ≤ λ]) ∪

⋃
n≥1

[Ttu ≥ λn] = X,

with λn some decreasing sequence of limit λ, and since [Ttu ≥ λn] = Tt([u ≥ λn]), this
can be written:

∀x ∈ X, ∀n ≥ 1,x 6∈ Tt([u ≥ λn]) ⇒ x ∈ Tt([u ≤ λ]). (4.5)

We shall prove this assertion, whose main argument lies in the following lemma:

Lemma 4.6
∀λ ∈ R, ∀t > 0, X = Tt([u ≤ λ]) ∪ Tt([u ≥ λ]).

Proof. Let x ∈ X.
1. Thanks to Theorem 2.39, all the shapes at level λ of X having an area at least t

have an intersection S that is also a shape at level λ. According to the remark following

Light version: some figures are not present

122 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

the proof of Theorem 2.39, if S is of lower type, it also has an area at least t. If S is of
upper type, it can be written as an intersection of upper shapes, and thanks to Lindelöf
theorem, as the intersection of a nonincreasing sequence of such elements, so its area is at
least t.

2. Suppose that S is of superior type and that x belongs to a hole H of the connected
component C of upper level set on which S is based. Then we can write

H =
⋃

G∈Gλ,x,G⊂H

G. (∗)

Indeed, that H contains the right hand side H ′ is evident. If this inclusion is strict,
since H is connected and H ′ is open (union of open sets), H ′ is not closed in H, so that
H ∩∂H ′ 6= ∅. Let y in that set. In any connected neighborhood U of y there are points of
[u ≥ λ], otherwise U would be in a connected component of [u < λ] and since there is some
G ∈ Gλ,x, G ⊂ H meeting U , we would have G ∪ H connected, which would contradict
the fact that G is a shape. Therefore y is the limit point of some sequence in [u ≥ λ],
thus u(y) ≥ λ. Thanks to Lemma 2.36, there is some lower shape G at level λ containing
y in one hole and contained in H. Since G is open, it contains a neighborhood of y, so
it meets some G′ ∈ Gλ,x contained in H. Thus G and G′ are nested, implying G ⊃ G′.
Therefore G ∈ Gλ,x, implying G ⊂ H ′, contrary to hypotheses. This shows that Equation
(∗) stands. As H is an union of open sets, thanks to Lindelöf theorem, it can be written
as the union of an at most countable number of them. Thus we get µ(H) ≤ t. This shows
that x ∈ Tt(S) ⊂ Tt([u ≥ λ]).

3. If S = sat(C) is of inferior type and x belongs to some hole H of C, then H is an
upper shape. By definition of S, we must have µ(H) ≤ t. Therefore, C̄ is connected, by
continuity of u, C̄ ⊂ [u ≤ λ] and sat(C̄) ⊃ S 3 x. Moreover, if x is in a hole of sat(C̄), this
hole is included in H, so its area is at most t. This shows that x ∈ Tt(C̄) ⊂ Tt([u ≤ λ]).
¤

To prove Equation (4.5), take x ∈ X such that for all n, x 6∈ Tt([u ≥ λn]). Owing to
Lemma 4.6, we have x ∈ ⋂

n Tt([u ≤ λn]). Thus, Tt being upper semicontinuous, we get

x ∈ Tt(
⋂
n

[u ≤ λn]) = Tt([u ≤ λ]).

Continuity preserving

If u is continuous, then Ttu is also continuous. Indeed

[Ttu ≥ λ] = Tt([u ≥ λ])

Light version: some figures are not present

4.2. GRAIN FILTER 123

PSfrag replacements

C1C2C3C4

C∞

Figure 4.4: The distance function to the set C∞ ∪
⋃

Cn, defined in Equation 4.6, does not
remain continuous under Tt.

showing that [Ttu ≥ λ] is closed, so that Ttu is upper semicontinuous and in the same
manner,

[Ttu ≤ λ] = Tt([u ≤ λ])

showing that [Ttu ≤ λ] is closed, and Ttu is also lower semicontinuous.
Remark 4.2. This does not stand if X = Rn and the image is not constant in a neigh-
borhood of infinity. Consider the distance function f to the closed set C∞ ∪C1 ∪C2 ∪ . . . ,
defined by:

Cn = [−n, 0]× {− 1
n
} ∪ {−n} × [− 1

n
, 2] ∪ [−n− 1

2
,−n +

1
2
]× [2, 3]

C∞ = R× {0}.
(4.6)

Then for all n, we get µ(Cn) = 1 whereas µ(C∞) = 0. For any t < 1, we have:

Tt([f ≤ 0]} = Tt(C∞ ∪
⋃
n

Cn) =
⋃
n

Cn,

which is not closed, so that Ttf is not lower semicontinuous (see Figure 4.4).
Whereas Tt preserves semicontinuity and continuity, it does not preserves differentia-

bility. Actually, a differentiable image becomes only continuous through the grain filter.
This distinguishes sharply such a filter from a regular one: It does not smooth the image,
and thus does not allow to compute derivatives. Instead, it selects the information in the
original image considered as useful.

T-junctions preserving

Whereas the grain filter does not smooth the level lines of the image, it preserves some
T-junctions, removes others, but does not destroy them. T-junctions are the limit points
of the common part of two level lines (thus a continuous image does not present any
T-junction, since level lines are isolevel sets, so are disjoint). They are strong clues for
occlusion, which is considered as the fundamental operation on images in [9]. Since T-

Light version: some figures are not present

124 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Analysis Pruning Synthesis

PSfrag replacements
Tt

Figure 4.5: Illustration of the tree pruning corresponding to the grain filtered image Ttu.
From left to right: the original image u; analysis of u by the FLST, giving its tree of
shapes (schematic illustration); the pruning, where all nodes corresponding to shapes of
area less than t are removed; synthesis of the pruned tree, by the reconstruction algorithm
1, giving the grain filtered image Ttu.

junctions are destroyed by the regular scale-spaces, some authors almost considered scale-
space as disturbing for image analysis, see [10].

4.2.4 Experiments

Computation

It is of course out of question to loop over all the connected sets whose saturation meets
a given pixel P and is of sufficient area, in order to compute Ttu(P) as in the definition,
by an inf sup. Instead of that, we have an easy way to compute it provided we are able
to extract the inclusion tree of the image u. Indeed, the grain filter corresponds to a tree
pruning. We remove from the tree all shapes of area less than t and we reconstruct the
image. Notice that if a shape S is to be removed, all the shapes of subtree rooted at S

have also to be removed, as their area is also less than t. This is the property defining a
tree pruning. This is illustrated in Figure 4.5, where the analysis and the synthesis are
the FLST and its associated reconstruction.

But a more efficient implementation of the grain filter can also be performed. It
consists in modifying slightly the FLST so as to perform directly the grain filter. Indeed,
the FLST works by removing successive shapes in the image u and storing them. It is
done in a region growing mode. That is parents are removed after their children. This is
exactly what the grain filter does. The only procedure to modify is ExtractBranch (see
Algorithm 4) and add another exit condition in the loop:

if #R ≥ t then
End← TRUE

end if

We can also drop the storage of the shape. Then the image u after having applied the so
modified algorithm is Ttu.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 125

If we want to compute directly the inclusion tree of the grain filtered image Ttu,
instead of the full tree and then removing some shapes, it is enough to modify the original
ExtractBranch of Algorithm 4 to add a condition before storing the shape in the tree:
that its area is greater or equal than t.

Examples

We show in Figure 4.6 the Lena image at various scales and in Figure 4.7 the corresponding
level lines. Notice that the remaining level lines do not move.

We show in Figures 4.8 and 4.9 images of a lanscape at various scales, and in Figures
4.10 and 4.11 their level lines.

Denoising

Morphological filters are particularly adapted to impulse noise. In our case, impulse noise
is likely to produce small shapes, so that to get rid of it, applying the grain filter at a
sufficient scale would be a good solution. Figure 4.12 shows the grain filter applied to an
image with various levels of impulse noise. Notice that most of the noise seems removed,
but level lines are noisy. This cannot be avoided by such a filter, since level lines of the
filtered image are present in the original image. However, at sufficiently large scale, the
noise seems to have disappeared.

Other filters based on size of grains exist and would have to be compared to the grain
filter. For example, area opening and closing imply to have an order between both. The
absence of selfduality is a problem for textured images in particular. Another possibility
is a median filter followed by a leveling. The problem with this strategy is that the
median filter would destroy T-junctions. At last, a pruning of the Binary Partition Tree,
as exposed in [76], would perhaps give good results, but supposes to define precisely the
merging criterion used, which would preferably be contrast invariant.

4.3 Adaptive Quantization

4.3.1 Description

Whereas it is guaranteed that the number of shapes in the image cannot exceed the number
of pixels, this number can however be too high for complex image analysis algorithms.
Typically, the number of shapes can be as high as half the number of pixels for a texture
image. We would like to throw away a part of the information judged irrelevant. A good
candidate for this is the set of small shapes. Removing them from the image, that is
applying the grain filter, has been shown to be effective, nevertheless this may not be
enough, as the experiments in the next section show. We would like to reduce further this
number.

Light version: some figures are not present

126 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.6: Scale-space of Lenna image (256 × 256) induced from the grain filter. The
scales (that is the minimum area of the shapes to be kept) are from left to right and top
to bottom: 1 (i.e., original image), 5, 25, 125, 625 and 3125.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 127

Figure 4.7: Level lines of the images of Figure 4.6, that is of the Lenna images at scales
1, 5, 25, 125, 625 and 3125. The level lines are drawn after a quantization of the images
every 4 gray levels.

Light version: some figures are not present

128 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.8: Scale-space of an image (630× 350). From top to bottom: scales 1, 5 and 25.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 129

Figure 4.9: (continuing Figure 4.8) From top to bottom: scales 125, 625 and 3125.

Light version: some figures are not present

130 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.10: Level lines of the images of Figure 4.8 after a quantization every 4 gray levels.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 131

Figure 4.11: Level lines of the images of Figure 4.9 after a quantization every 4 gray levels.

Light version: some figures are not present

132 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.12: Removal of impulse noise by the grain filter. The three columns show the
scale-space derived from the grain filter of the original image (first column), the image
with impulse noise 10% (second column) and 20% (third column). The scales, from first
row to fifth row, are respectively 1, 5, 10, 20 and 40.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 133

A simple solution would be to quantize the image: this reduces the number of gray
levels in the image, and hopefully the number of shapes in the same proportion. Nev-
ertheless, a blind quantization can remove important features in the image. We would
like a quantization adapted to the content of the image. In [24], Froment proposes to
keep only level lines having the maximum number of T-junctions and reports very good
compression results. The idea behind is that even for objects occluding no other object,
the background is never uniform in natural images: there are almost always gradients of
light reflections, small peculiarities, etc. Nevertheless, it is clear that some important lines
in the image may not necessarily have many T-junctions. The approach we propose here
is related to that one, in the sense that the criterion relies on heuristic observations about
natural images1.

4.3.2 Gradations

The lens of the camera smoothes the image before the sampling process. For this reason,
what would normally appear as sharp discontinuities in the image presents a gradation
(see Figure 4.13). The effect of a gradation is an accumulation of nested shapes close to
each other. The idea of our adaptive quantization is to keep only one shape to represent
this gradation.

The shape we keep in a gradation can be arbitrary, but from the principle that objects
in our world are mainly regular, a good shape to keep would be the most regular one.
Our regularity criterion is L2/S where L is the length of the border of the shape and S

its area. The shape in the gradation having the minimal L2/S is kept, the other shapes
are destroyed. Moreover, to ensure that the shape remains visible, we put as its gray level
the mean of the gray levels of pixels inside the gradation. This averaging of gray levels is
just here for visual convenience.

We need to precise the meaning of the term gradation. Consider the following relation
' between two shapes S1 and S2:

– S1 is the parent of S2;

– S1 has no other child than S2;

– S1 and S2 have the same type.

They seem to be reasonable requirements to state that S1 and S2 are in the same gradation.
The second condition prevents a shape that contains several children to be in the same
gradation as one of them. We could also add another condition: that area of S1 and
area of S2 do not differ more than a given percent, to ensure that the shapes are really

1We call natural images the snapshots from a camera, whether digital or analog, by opposition to
synthetic images.

Light version: some figures are not present

134 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.13: Visual objects present a gradation at their boundaries in natural images.
Top: zoomed detail (50 × 50) of an image (left) and the same part of the image after
the grain filter of area 20 pixels (right). Bottom: some of its level lines (left) and the
same lines after smoothing with the morphological affine invariant scale-space, so as to
distinguish them (right). Notice the accumulation of level lines at the boundary of the
meaningful shape.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 135

Figure 4.14: Partition of an inclusion tree into gradations. The root is represented by a
pentagon, shapes of inferior type by a circle and shapes of superior type by a square. The
gradations are shown as dashed ellipses.

close. This percent of tolerance would therefore become a parameter of the method. Of
course, the three (or four) above requirements do not define an equivalence relation, it is
nevertheless not hard to see that if S1 ' S2 ' · · · ' Sn and S′1 ' S′2 ' · · · ' S′m with
Sn = S′1, then

S1 ' · · · ' Sn = S′1 ' · · · ' S′m.

Thus the maximal sequences of shapes related by ' are disjoint. We will call gradations
these maximal sequences and the shapes not belonging to such a maximal sequence. We
will see nevertheless that it is convenient to isolate as one gradation by itself the shapes
which have at least one child of a different type (see Figure 4.14). In a gradation, the
most regular shape will be called the representative shape of the gradation.

4.3.3 Removal of a node

Now that the definition of a gradation is stated, we explain how we can remove the node
corresponding to a shape not representative of its gradation. Removing the node simply
corresponds to reconnecting its children to its parent. This is illustrated in Figure 4.15.
Provided the removed node is not the root, the resulting structure remains an inclusion
tree.

We also need to say what happens to the pixels of a shape S whose corresponding

Light version: some figures are not present

136 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

S

P

PSfrag replacements
C1 C2 C3

Figure 4.15: Removing a node S from the tree corresponds to the following operation:
reconnect its children, C1, C2 and C3, to its parent P .

node we remove. The simplest is to set their smallest containing shape to the parent P of
S. With this convention, it is very easy to manipulate the corresponding tree: suppose we
have a boolean field attributed to each node, removed, saying if the node is considered to
be removed or not. The only thing we have to do when we suppress a node in the tree is
to store it in the field removed provided we respect the following slight conventions: the
parent of a shape S is the parent of S in the original tree provided it is not removed, or
the parent of this one if it is removed, and so on (we go up the tree from S until we meet a
node not removed) and the smallest shape associated to a pixel is its smallest containing
shape in the original tree provided it is not removed, or the first ancestor not removed.
Notice it is harder to find the children of a shape in the modified tree, because we have
several branches to explore until meeting not removed nodes.

The fundamental question concerning the removal of a node in the inclusion tree is: is
the modified tree the inclusion tree of the reconstructed image? The reconstructed image
is made as usual: the gray level of the pixel is the gray level associated to the smallest
shape containing it. Figure 4.16 shows that not any node can be removed to fulfill this
condition. The dramatic effects provoked by the removal of this shape is due to the fact
that this shape has a child of a different type. Even if the parent P of the shape S were of
the same type as S, we would have to compare the gray level of P to the one of the child
of S to ensure the consistency condition.

On the contrary, it is safe to remove a leaf of the tree. More generally, the following
nodes are guaranteed to be removable:

1. A node without child;

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 137

0

S

<0S

>1

>2

21 12

1

1

>2

1 12

1

1

>2

<1 <1

Figure 4.16: The blind removal of a node in the tree can yield a tree that is not the
inclusion tree from its reconstructed image. Left: original image and its tree, whose node
S we remove. Right: the reconstructed image after the removal of the node S and its
associated inclusion tree. Notice that the removal of S has dramatic effects on the tree of
the reconstructed image: it removes a shape at level 2, splits the superior shape at level 1
into two shapes and these shapes become of inferior type.

2. A node S with children of the same type as S.

The conditions are sufficient, but not necessary, for a shape to be removable. Nevertheless,
this is enough to be sure that removing all shapes except one from a gradation is safe:
indeed, if a gradation is made of several shapes, the smallest shape of the gradation has
no child, or children of the same type; all other shapes of the gradation have one unique
child, which is in the gradation, so which is of the same type. In the same manner, taking
the average of the gray levels of the pixels whose smallest shape is in the gradation and
attributing it to the representative shape of the gradation is safe: it is comprised between
the gray levels of the smallest and the largest shape of the gradation, so there can be no
inversion of contrast.

4.3.4 Experiments

Experiments concerning the grain filter show that the visually important information
remain present through the grain filter at small scales. Figure 4.17 shows that the number
of shapes in Lenna image decreases dramatically for small areas. Even at small scales, the

Light version: some figures are not present

138 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Area 1 2 3 4 5
Shapes 7327 2382 1289 864 597
Area 6 7 8 9 10

Shapes 427 360 304 248 207
Area 11 12 13 14 15

Shapes 207 178 155 130 115
Area 16 17 18 19 20

Shapes 114 87 106 85 89
Area 21 22 23 24 25

Shapes 90 79 80 59 61

Figure 4.17: The number of shapes of given area in the Lenna image (256 × 256). Only
areas from 1 to 50 are shown. The total number of shapes in the image is 19, 324.

Area 1 2 3 4 5
Shapes 156, 328 63, 890 36, 813 25, 107 18, 221
Area 6 7 8 9 10

Shapes 14, 170 11, 432 9443 8027 6901
Area 11 12 13 14 15

Shapes 5958 5311 4634 4149 3844
Area 16 17 18 19 20

Shapes 3542 3198 2958 2724 2607
Area 21 22 23 24 25

Shapes 2394 2273 2026 2002 1884

Figure 4.18: The number of shapes of given area in the carpet image (715× 1024). Only
areas from 1 to 50 are shown. The total number of shapes in the image is 484, 961.

application of the grain filter reduces of a considerable amount the number of shapes. For
example, at scale 3 pixels, almost half the shapes disappear.

We can make the same observation for a highly textured image, whose statistics are
shown in Figure 4.18.

The reduction of the number of shapes induced by the adaptive quantization is modest
if no grain filter was applied before. That is because small shapes (of 1 or 2 pixels) are
very frequent in the image, so that the shapes having a single child are scarce, because
most of the shapes have a child shape of small area. Therefore, the number of gradations
in the image is not much lower than the number of shapes, explaining the bad performance
of this quantization in terms of compression. However, as soon as a grain filter is applied
before, the number of shapes can decrease sharply.

Figure 4.19 shows the number of remaining shapes in the Lenna image after the grain
filter followed by this adaptive quantization, and Figure 4.20 some corresponding images.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 139

Figure 4.19: Decay of the number of shapes with Lenna image (256× 256) undergoing the
grain filter followed by the adaptive quantization, w.r.t. the area of the grain filter. Left:
The absolute number of shapes, after applying the grain filter (dark curve), or the grain
filter followed by the adaptive quantization (light curve). Right: The same, in terms of
percentages of remaining shapes relative to the initial number of shapes.

Notice that the quantized image is a sketchy version of the grain filtered image, but
that few details are missing (except gradations), whereas the amount of information is
dramatically lower. Figures 4.21 and 4.22 show similar result for a picture of Vermeer’s
’View of Delft’.

Light version: some figures are not present

140 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.20: Grain filter (left) followed by adaptive quantization (right) of the Lenna
image (256× 256). The scales of the grain filter are from top to bottom 5, 10 and 20.

Light version: some figures are not present

4.3. ADAPTIVE QUANTIZATION 141

Figure 4.21: Decay of the number of shapes with Delft image (464× 384) undergoing the
grain filter followed by the adaptive quantization, w.r.t. the area of the grain filter. Left:
The absolute number of shapes, after applying the grain filter (dark curve), or the grain
filter followed by the adaptive quantization (light curve). Right: The same, in terms of
percentages of remaining shapes relative to the initial number of shapes.

Light version: some figures are not present

142 CHAPTER 4. APPLICATIONS TO SOME MORPHOLOGICAL FILTERS

Figure 4.22: Grain filter (left) followed by adaptive quantization (right) of the Delft image
(256× 256). The scales of the grain filter are from top to bottom 5, 10 and 20.

Light version: some figures are not present

Part II

Image Registration

143 Light version: some figures are not present

Chapter 5

Introduction

5.1 Generalities

The 2D image registration problem can be posed as follow: given two images that d-
iffer globally by a geometrical transformation, how to recover this transformation. The
transformation is in a class of geometrical maps depending on a small number of parame-
ters. The most classical ones are: translation (two parameters), rotation-translation (three
parameters, translation plus angle of rotation) and similarity (four parameters, angle of
rotation, scaling factor and translation). The rotation-translation allows to recover the
pose of a flat object when the distance of the camera to the object remains constant, the
camera pointing perpendicularly to the object plane and the similarity transform when
the distance of the object to the camera can change, but the camera remains pointed
perpendicularly to the object plane.

When the direction of the camera changes, these models are insufficient and affine
transform (six parameters) is necessary, provided the camera is far (compared to the focal
distance) from the object, and if not, a full perspective projection (height parameters) is
necessary.

If the observed object is not flat, the change cannot be modeled only by a geometrical
transform with few parameters (except when the shape of the object itself can be mod-
eled as depending on a few parameters), and this goes outside the framework of image
registration, into stereo, see Faugeras [19].

Given the low number of parameters describing the geometrical transform, this problem
is at first sight easy to solve, but as often in image processing, the modeling of the problem
corresponds loosely to experimental conditions. Apart from the fact that the observed
images are sampled (and often not at Nyquist rate) and quantized versions of the analog
ones (which is not a negligible problem), and apart from the presence of some noise of
observation, the conditions of observations are often the following:

1. The lightning conditions may have changed between both snapshots, resulting in a

145 Light version: some figures are not present

146 CHAPTER 5. INTRODUCTION

global, or even local, contrast change;

2. The observed images are composed in general of several objects, some of them not
obeying the global motion, leading in particular to occlusions.

There are roughly two kinds of techniques for registration, we refer to the review of
Brown [7] and references therein. Most techniques are based on global or local correlation,
and lead to fast computations in the Fourier domain, as for instance DeCastro and Morandi
[17], or Yaroslavsky and Eden [94, chapter 9]. A second kind of method (like Wang and
Bhattacharya [91]) first computes some image salient features, which should be sufficiently
stable to appear in both images.

5.2 Correlation methods

The correlation methods cover in fact a large class of possibilities, sharing the common
characteristic that they rely on a measure of difference between the images. Suppose we
have a measure giving the distance between two images. Then the displacement between
the images is the one that minimizes this distance (that cancels it, in the ideal case). The
problem is therefore the minimization of a function depending on the parameters of the
displacement.

The most classically used distance is given by the L2 norm. The L2 distance between
u and v can be developed into the sum of the norms of u and v minus two times the
cross-product u · v. Since the norms of u and v do not depend on the parameters for the
displacement (and are ideally equal), thanks to a change of variable in the integrals, the
problem is the maximization of the term

arg max
A

∫
u ◦A(x)v(x) dx

where A belongs to the class of admissible displacements. This quantity to be maximized
is the correlation of u◦A and v. Variants of this are common, such as taking the correlation
of u ◦ A − ∫

u and v − ∫
v to be insensitive to a global shift of the contrast, or using a

measure different from the Lebesgue measure in the integral, so as to highlight some parts
of the image for example.

If we restrict to translations, it is well known that the two parameters of the translation
appear in the phase of the Fourier transform, and thus can be isolated easily; if v(x) =
u(x − t), the Fourier Shift theorem gives the following relation between their Fourier
transforms, see DeCastro and Morandi [17] for example:

Fv(ξ) = e−iξ·tFu(ξ),

where Fu(ξ) =
∫

u(x)e−ix·ξ dx. The unknown translation vector t can be isolated by the

Light version: some figures are not present

5.3. FEATURES MATCHING 147

formula:

e−iξ·t =
Fu(ξ)Fv(ξ)
|Fu(ξ)|2

and

F−1

(
Fu(ξ)Fv(ξ)
|Fu(ξ)|2

)
= δt.

This represents an image uniformly at 0, except at t, where it should be 1. In practice,
the coordinates of the maximum of this image are taken as the translation vector. This
requires only three Fourier transforms, making it an algorithm of choice when computation
time matters.

The Fourier technique is also able to deal with a rotation angle and a scaling factor,
that is, to recover a similarity, as explained by Reddy and Chatterji [65]. Let us summarize
it for the case of a rotation-translation: v(x) = u(R−θx− t).

Taking the modulus of the Fourier transform of each member gives:

|Fv(ξ)| = |Fu(R−θξ)|

that is, the modulus of the Fourier transforms undergoes the same rotation. In the pro-
cess, the translation appeared only in the phase, so disappears when taking the modulus.
Therefore, the center of rotation is now the origin in the Fourier domain and it suffices to
take a polar version of the modulus to transform the rotation in a translation, the standard
technique allowing to recover it, and after that to compensate in u and this reduces to
finding the translation. If there is moreover a scale change, the same technique applies by
taking the log-polar transforms of the modulus of the Fourier transforms. The translation
in x gives the log of the scale change and the translation in y the angle of rotation. Notice
however that taking the polar or log-polar transform requires interpolation in the Fourier
domain. The interpolation to use is far from obvious, and can affect the result.

Anyway, whether computed via Fourier transform or not, the correlation method is
global, and if there are secondary motions in the images, the manner they affect the
result is the following: the computed motion is a kind of average of all the motions in
the images. A way to prevent this is to make local correlation, that is, compute the
correlation restricted to some windows. Moreover, a change of contrast may modify the
result in complex ways.

This makes the correlation method an easy but blind method: it can be sensitive to
several factors in unknown ways.

5.3 Features matching

The features matching method is more complex to devise than the correlation based
method, because of the variety of possible features and the number of ways to match

Light version: some figures are not present

148 CHAPTER 5. INTRODUCTION

them. The features can be lines, edges, corner points, etc. See for example Wang et al.,
[90]. The only constraint is that these points must be robust enough, and their location
accurate enough. These features can be local (like corner points, inflexion points of curves)
or semi-local (segments).

Local correlation can be considered in some sense also as a feature matching method:
a neighborhood (a window) is taken around each point and the correlation is restricted to
this neighborhood.

5.4 Overview of the method

In contrast to local correlation methods, the proposed method does not fix any a priori
neighborhood for matching. The semi-local methods permit to take advantage of global
enough features for accurate displacement estimation, whereas being local enough to raise
the hope that many of the features in both images are not altered by occlusion. Indeed, our
features are the shapes. They depend on the image and there are of all sizes. Each shape
is tentatively matched with another one in the second image. For the whole registration
to be contrast invariant, there are two requirements:

1. The extracted features do not depend on the contrast in the image.

2. The matching of features does not into account their contrast.

The first requirement is already met, since shapes do not depend on the contrast. The
second one obliges us not to take into account their gray level in the matching. There-
fore, only the geometric information provided by the shape must be used. Moreover, the
matching must be done independently to the (unknown) displacement, that is, must be
independent on all transformations in the class of possible displacements. Invariants based
on moments are easy to get for the common classes of displacements, see Reiss [66]. Two
shapes are considered as matching if their associated invariants are close.

Once we have a set of matchings of shapes between both images, we make the matchings
vote for some displacement, that is, for the parameters defining the motion. The set of
parameters having received the maximum number of votes must be the global dominant
displacement. Once it is found, the result can be improved by a post processing: we
can make a mean of displacements given by the set of matchings compatible with the
dominant motion, that is, the winners of the election. This ensures that false matchings, or
matchings corresponding to secondary motions, do not mix with the dominant matchings,
and hopefully the resulting average may be accurate. This is an advantage of registration
by features matching: the features can be discriminated according to their vote.

Light version: some figures are not present

Chapter 6

Contrast Invariant Image

Registration

The main parts of this chapter were already published in [57].

6.1 Correspondences

6.1.1 Choice of features

As explained in the previous chapter, our choice is to find correspondences of features
between the images. Since the contrast change that can occur between the images is
one of our main concerns, we have to carefully select our features so that they do not
depend themselves on the contrast. Good candidates for that are level sets, or better
(because they are less global) connected components of level sets; level lines satisfy also
the requirements. As in this dissertation we have especially designed a contrast invariant
image representation, the inclusion tree of shapes, we are tempted to use it. Actually, in
the present work, the inclusion information is not used, or very poorly. But we have to
keep in mind that it is a high level structuring information, and that it could improve
dramatically the efficiency of the registration. Anyway, the features that we use here are
the shapes of the images, that is, the connected components of level sets whose holes we
fill. As explained in the first part of this dissertation, we are confident that some of these
shapes represent actual objects.

6.1.2 Characteristics

The success of an image registration method based on features correspondences relies on
the amount of invariance put in these features and in the correspondence rules. After
having chosen contrast invariant features, we try to find contrast invariant characteristics
to match them. But these characteristics must also be invariant with respect to any allowed

149 Light version: some figures are not present

150 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

displacement. That means that if we are looking for a similarity, the characteristics of the
shapes must be similarity invariant.

We choose global and elementary characteristics of the shapes: their moments. The
moments of order n of a subset S of R2 are:

mi j =
∫∫

S
xiyj dx dy =

∫∫
R2

XS(x, y)xiyj dx dy (6.1)

where i + j = n. There are n + 1 moments of order n. The moment of order 0 is the area
of S, the moments of order 1 are m1 0 = m0, 0x̄S and m0 1 = m0, 0ȳS , the coordinates of
the barycenter of S multiplied by its area.

Remark 6.1. As the moments are additive characteristics, they can be computed effi-
ciently for all the shapes, as exposed in Section 3.4.2.

Except m0 0, the area of the shape, none of the moments is invariant with respect to
translation. For this, we need to use central moments, which are defined as

µi j =
∫∫

S
(x− x̄S)i(y − ȳS)j dx dy =

∫∫
R2

XS(x, y)(x− x̄S)i(y − ȳS)j dx dy (6.2)

Notice that µ1 0 = µ0 1 = 0. The central moments of order n are polynomial functions
of the moments of order less or equal than n.

The translation invariance is not enough for the applications we aim to. We would need
at least to add rotation invariance, and maybe also scale invariance. On the other hand,
each invariance added disables some moments. For example, the translation invariance
requirement cancels the moments of order 1, which become useless for correspondence.
This effect forces us to consider higher order moments. This is a limit of this method,
since it is well known that higher order moments are more sensitive to noise. That is why
we restrict ourselves to such simple displacements as rotation (with unknown center) or
similarity, and we will not consider moments of order larger than 3.

The inertia matrix of a subset S of R2 is the 2×2 symmetric matrix based on moments
of order 2:

IS =

(
µ2 0 µ1 1

µ1 1 µ0 2

)
. (6.3)

If we consider the inertia function i : S1 → R which maps an angle α to the integral of the
square distances of the points of S to the line passing by the barycenter and of orientation
α, i is a quadratic form of the vector (cos α, sin α)T of matrix IS . If S undergoes a rotation
of angle α, the new inertia matrix of S becomes:

IRθS = RθSR−θ (6.4)

Light version: some figures are not present

6.1. CORRESPONDENCES 151

where Rθ is the rotation matrix of angle θ. This shows that the inertia matrix is not
rotation invariant, but that the two numbers det IS and tr IS , respectively the determinant
and the trace of the inertia matrix, are.

If we allow to go up to order 3 for the moments, two other translation-rotation invari-
ants can be constructed:

r4 = (µ3 0 − 3µ1 2)2 + (µ0,3 − 3µ2 1)2

r5 = (µ3 0 + µ1 2)2 + (µ0,3 + µ2 1)2.

To sum up, we associate to each shape its vector of rotation invariant characteristics:

r = (r1, r2, r3, r4, r5)

r1 = m0 0

r2 = tr IS

r3 = det IS

r4 = (µ3 0 − 3µ1 2)2 + (µ0,3 − 3µ2 1)2

r5 = (µ3 0 + µ1 2)2 + (µ0,3 + µ2 1)2.

If we expect an important amount of noise in the images, we had better drop the charac-
teristics r4 and r5 since they are likely to become insignificant.

Moreover, if we expect a scale change between the images, the area m0 0 is not any more
an invariant. Nevertheless, all of these characteristics are relative invariants, meaning that
we can divide them by the area to a certain power to get absolute invariants with respect
to a scale change. So in the case of similarity registration, the vector of characteristics is:

s = (s1, s2, s3, s4)

s1 = r2/m2
0 0

s2 = r3/m4
0 0

s3 = r4/m5
0 0

s4 = r5/m5
0 0.

Again, s3 and s4 would rather not be used if much noise is suspected. The normalization
by the area to a certain power is likely to make all these characteristics less reliable than
the rotation invariant ones, so that if no change of scale is expected, it is preferable to use
the rotation invariant characteristics rather than the similarity invariant ones.

Other invariants relying on moments of higher order, and the way to construct them,
can be found in Reiss [66].

Light version: some figures are not present

152 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

6.1.3 Finding correspondences

Given the two images u1 and u2 to register, we extract their shapes S1, . . . , Sk and
S′1, . . . , S′l and compute their associated vectors of characteristics, c1, . . . , ck and c′1, . . . , c′l,
which can be rotation-translation invariants or similarity invariants. Since they are com-
posed of invariants, we can compare them. We would say that shape Si of u1 and shape S′j
of u2 are matching if their associated characteristics vectors, respectively ci = (c1

i , . . . , c
m
i)

and c′j = (c′1j , . . . , c′mj) satisfy:

∀p ∈ {1, . . . , m} 1
tp
‖c′pj ‖ ≤ ‖cp

i ‖ ≤ tp‖c′pj ‖, (6.5)

where t = (t1, . . . , tm) is composed of thresholds of tolerance, tp ≥ 1 for all p. The nearer
tp to 1, the less tolerant we are about an error in characteristic cp.

If Si and S′j are matching, we note this correspondence C = (Si, S
′
j).

Remark 6.2. It is to be noticed that Equation (6.5) is clearly reflexive and symmetric but
not transitive (unless t = (1, . . . , 1)), which is what we expect of a similarity relation: every
shape can be mapped to any other shape by a sufficient number of small perturbations,
each intermediary shape being similar to the previous one.

6.2 Votes

Once we have found the set of correspondences C = (C1, . . . , Cq) between images u1 and
u2, we are in position to determine the displacement. Nevertheless, with the crude criteria
of correspondence we use, we expect to find a large number of erroneous correspondences.
That is why we would not like to make all the correspondences to participate in the
determination of the displacement, but rather to find a way of automatic selection of the
“good” ones.

A good means to do that is to design an election: the correspondences vote for a
displacement, that is, for a set of parameters, and the set of parameters having received
the largest number of votes is our estimation of the displacement. This is the principle of
a voting procedure, but this is not exactly what we do: actually, each correspondence is
theoretically sufficient to determine a displacement, whether it be a rotation-translation or
a similarity, by comparing the moments (for example, the scale change would be the ratio
of areas, the rotation angle would be the angle between the directions of eigenvectors of
the inertia matrix, the translation the vector determined by the barycenters). But again,
we are not confident enough about the values of the moments to estimate directly the
parameters. As we have said, these moments are just good enough to make a preliminary
selection of the correspondences. Nevertheless, the barycenters, since they are based on
moments of order 1, are likely to be fairly reliable. In this manner, one correspondence
is just sufficient to estimate a translation, but not more. On the contrary, based on two

Light version: some figures are not present

6.2. VOTES 153

correspondences, we have two points and their displaced images, so this is just what is
needed to estimate a similarity, and more than necessary to estimate a rotation-translation.

If we consider two correspondences (Si, S
′
j) and (Si′ , S

′
j′) of respective barycenters xi,

yj , xi′ and yj′ , the parameters of the similarity, s, θ and t are given by:

s =
‖yj′ − yj‖
‖xi′ − xi‖ (6.6)

sin θ =
(xi′ − xi) ∧ (yj′ − yj)
‖xi′ − xi‖.‖yj′ − yj‖ (6.6′)

cos θ =
(xi′ − xi).(yj′ − yj)
‖xi′ − xi‖.‖yj′ − yj‖ (6.6′′)

t = yj − sRθxi (= yj′ − sRθxi′) (6.6′′′)

If we estimate only a rotation-translation, we should check that s = 1, allowing however
a certain tolerance. If that is not the case, both correspondences are considered incom-
patible and they do not vote together. Notice that these formulas involve divisions by
the quantities ‖xi′ − xi‖ and ‖yj′ − yj‖, which can sometimes nearly vanish. We should
therefore check that they are sufficiently large, so that the vote be precise enough. Other-
wise, we should hinder their vote. Another verification before the votes would be to check
that the ratios of area of corresponding shapes correspond approximately to the estimated
scale factor s.

If these conditions are fulfilled, the pair of correspondences (Si, S
′
j) and (Si′ , S

′
j′) is

allowed to vote. That means that a counter corresponding to a place in a 3-D (for rotation-
translation) or 4-D (for similarity) parameter space is incremented. However, finding a
maximum in such a histogram can take time. We would rather restrict ourself to 1-D or
2-D histograms. The translation part of the displacement, t, can be estimated only after
s and θ, so that we can separate the estimation of the linear part and of the affine part.
In a first step we can make all pairs of correspondences vote (in fact only the compatible
pairs) for the scale (for the case of similarity) and the rotation, find the maximum counter
in this histogram and then, in a second step, vote in a 2-D histogram for the translation
by using the estimated linear part of the displacement. In this manner, only 1-D or 2-D
histograms are used.

Notice this voting procedure was already used by Chang et al. in [15].

Light version: some figures are not present

154 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

6.3 Accuracy

Since we work with digital images, the positions of the shapes are precise in the best case
to one pixel1. This hinders the voting procedure to yield an estimation of the parameters
better than one pixel. In some applications, this is far from sufficient. An accuracy of one
tenth of a pixel or one hundredth of a pixel is needed. If the errors due to digitization are
Gaussian distributed, a linear regression of the estimated parameters would yield a more
accurate result. In this regression, that is a mean of different estimations, we must not
include the false estimations, due to erroneous correspondences. Therefore, we estimate it
only with the electorate of the elected displacement. This “bootstrap” estimation is likely
to be much better.

We begin by selecting the correspondences that are compatible with the winning dis-
placement (the electorate of the dominant motion). The correspondence (Si, S

′
j) is con-

sidered compatible if
‖yj − sRθxi − t‖ ≤ ε.

The threshold ε can be estimated from the shape of the histograms near their maximum.
Sharper peaks would mean that the votes are precise, and ε can be small, whereas smoother
peaks would mean that many votes are not precise, so a larger ε would be adapted. More
precisely, what we actually do is not only find the maximum in the histogram for each
parameter, but also select a mode around this maximum, the mode corresponding to
the largest interval around the maximum where the histogram remains concave; then
we consider that the correspondence is compatible with the motion if there is a set of
parameters in each mode such that xi would be mapped exactly to yj . This way of doing
avoids the introduction of a supplementary parameter in the algorithm, ε.

We note the set of compatible correspondences Cc. Then we want to solve the mini-
mization problem:

arg min
s,θ,t

∑
(Si,S′j)∈Cc

‖sRθ xi + t− yj‖2. (6.7)

The problem is apparently nonlinear due to the fact that θ appears in the form of cos θ

and sin θ, but we can change the unknown variables to make it linear:

arg min
s1,s2,t

∑
‖

(
s1 −s2

s2 s1

)
xi + t− yj‖2. (6.8)

1This restriction also happens with the correlation methods. To have better accuracy, it is necessary
to interpolate the images, or equivalently the correlation surface, see Tian and Huhns [87].

Light version: some figures are not present

6.4. COMPLEXITY 155

Noting S = (s1 s2)T and taking into account the equality(
s1 −s2

s2 s1

)
xi = A(i)S where A(i) =

(
xi −yi

yi xi

)
,

we can rewrite Equation (6.8) into

arg min
S,t

∑
‖A(i)S + t− yj‖2. (6.9)

In order to solve Equation (6.9), we compute the partial derivatives relative to the
parameters and equate them to 0. This yields the system∑

A(i)T A(i) S +
(∑

A(i)
)T

t =
∑

A(i)Tyj∑
A(i) S + N t =

∑
yj

if N is the number of correspondences compatible with the modes. After some easy
algebraic manipulations, we get

[∑
A(i)T A(i) − 1

N

(∑
A(i)

)T (∑
A(i)

)]
S =

∑
A(i)Tyj − 1

N

(∑
A(i)

)T (∑
yj

)
t =

1
N

[∑
yj −

∑
A(i) S

]
which allows to compute the vector S and then the vector t.

To compute S, we have to invert the 2× 2 matrix

∑
i

A(i)T A(i) − 1
N

(∑
i

A(i)

)T (∑
i

A(i)

)

which by Cauchy-Schwarz inequality is singular if and only if all the A(i) are proportional,
that is, all the xi are aligned.

6.4 Complexity

If k is the number of shapes of the first image and l of the second image, we can theoretically
have up to k.l correspondences and the complexity of the voting step is (k.l)2 since we
have to take into account all pairs of correspondences. Even if we remove too small shapes
(less than 20 pixels for example), the number of shapes in each image can be of the order
of tens of thousands. So the voting procedure becomes at this condition non affordable.
However, this is a worst case configuration. In general, the number of correspondences is
far less than k.l; it is fortunately rather of the order of magnitude of max(k, l). But even

Light version: some figures are not present

156 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

as this, the voting procedure can be too greedy in computational time for us.
To reduce even more the number of correspondences, the most basic solution is to

quantize the images before extracting the shapes. The number of shapes is almost au-
tomatically divided by the quantization step. But this quantization can lose important
objects in the image. A better idea is to make something similar to the adaptive quan-
tization presented in Section 4.3: to group the shapes into “objects”, closely related to
branches in the tree. Indeed, owing to the smoothing done by the lens of the camera,
objects in the scene often correspond to several nested shapes. The idea is to group these
nested shapes into the same “object” and make objects vote instead of shapes directly,
with a weight corresponding to the number of shapes included in the objects, since objects
composed of many shapes are likely to represent important things in the scene. We are
quite confident that preventing the votes of pairs of corresponding shapes inside the same
“object” would not disturb the histograms of votes. Actually, shapes inside the same ob-
ject are very close, so that their common vote given by Equations (6.6), (6.6′′) and (6.6′)
would be very imprecise.

6.5 Extensions

6.5.1 Reducing the number of correspondences

Actually, the number of small shapes is tremendous and moreover they usually do not
present some characteristic “shape”! This is especially true for shapes of one pixel. These
shapes match with any other shape of the same size, and the complexity of the voting
procedure becomes much too high. That is why they are not taken into account (whether
the images were grain filtered before or we simply do not include them in the dictionaries
of shapes) when we look for correspondences. Nevertheless, nothing prevents them to be
included in the later step of least squares minimization (6.7). Indeed, once the displace-
ment is roughly estimated, the number of compatible correspondences of small shapes is
greatly reduced, and the result of the least squares minimization can be more accurate.

Nevertheless, for the voting procedure, which is of complexity N2 if N is the number
of votes, N must be not too large in order that the computations be feasible; typically
it should not be more than a few thousands so that the registration can be performed in
a few seconds. The removal of small shapes can be insufficient to reduce the number of
correspondences. If this is the case, some strategy must be designed to reduce a priori
their number. For example, a one-to-one constraint could be added (this is one of our
current research interests).

An easy procedure to reduce the number of correspondences is to use the same idea as
for our adaptive quantization, to glue the shapes into gradations. However, the number
of shapes in a gradation can be important, so we have to keep it. Furthermore, an upper
threshold of area between a shape and its child must exist, so as not to glue into the same

Light version: some figures are not present

6.5. EXTENSIONS 157

gradation shapes of very different types. These remarks imply small modifications of the
notions of gradations, and to distinguish them, we will rather call sections the new notion.
A section is composed of a monotone set of shapes, its weight is this number of shapes,
and we can also compute its center, understood as the center of the largest shape in it.
We would like to make correspondences of sections vote, since the number of sections is
likely to be quite lower than the number of shapes. For this, we need to define two things:
a correspondence of sections and its weight.

Correspondences of sections

The definition of a correspondence of sections is quite natural: we say that two sections S1

and S2 match if some shape of S1 matches at least one shape in S2. Therefore, the number
of correspondences of sections cannot exceed the number of correspondences of shapes. The
construction of these correspondences of sections is easy: we order the correspondences of
shapes with respect to the lexicographic order induced by a total order of the shapes of the
first image and a total order of the shapes of the second image. The orders of shapes must
be any order of their containing section, which order is arbitrary, it can be for example
the address of their data structure. Then we construct one correspondence of sections for
each extent of correspondences of shapes whose containing sections are equal.

Thus a correspondence of sections is a set of correspondences of shapes, whose con-
taining sections are the same.

Weight of a correspondence of sections

We have to attribute a weight to the correspondences of sections. This depends on the
number of correspondences of shapes of which they are composed, but we can do better
than that: we can enforce an inner coherency inside the correspondences of sections.
The coherency constraint is the following: two shapes of the first image cannot match
the same shape in the second image, conversely, two shapes of the second image cannot
match the same shape in the first image, and more generally, two correspondences of
shapes inside the same correspondence of sections are considered incompatible if the areas
of the shape of the first image are ordered differently as the areas of their respective
corresponding shapes in the second image. If we note #S the area of a shape S, the
correspondences of shapes (S1, S2) and (S′1, S′2) are incompatible if #S1−#S2 and #S′1−
#S2 have different signs (or one is zero and the other one not). This is illustrated in Figure
6.1. We aim at removing some correspondences of shapes so as to keep only compatible
ones, and a maximum number of them. This number is the weight of the correspondence
of sections. Incompatible correspondences in Figure 6.1 are the ones which intersect or
have an extremity in common.

This can be represented as a graph problem. Each correspondence of shapes can be
represented by a node and a link between two nodes means their incompatibility. This

Light version: some figures are not present

158 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

Figure 6.1: Incompatibilities of correspondences of shapes inside a correspondence of sec-
tions. If the left circles represent the shapes of the section in the first image, ordered from
top to bottom by inclusion, the right circles the shapes of the section in the second image,
ordered similarly, and the lines the correspondences of shapes, the gray circle arcs link
incompatible correspondences of shapes.

amounts therefore to select a maximum number of edges such that no pair of them are
linked, that is to say, a maximal clique of the graph. The solution is not unique, but
one solution is enough for us. The search for maximal cliques in a graph is well known
to be a NP-complete problem, that is, only resolved by enumerating all the possibilities.
Fortunately, a better solution exist in our case.

The fact that the shapes inside each section are totally ordered (by inclusion) is essen-
tial. Given a correspondence of sections (S1,S2) composed of correspondences of shapes

C1 = (Si1 , S
′
j1), . . . , Ck = (Sik , S′jk

),

we can order them totally by the relation:

Cm ≤ Cn ⇔
{

#Sim < #Sin or

#Sim = #Sin and #S′jm
≥ #S′jn

. (6.10)

This is simply the lexicographic order induced by the areas of the shapes in the left image
as primary key, and the opposite of the areas of the shapes in the right image as secondary
key. Suppose that, maybe after permuting the indices, C1 < C2 < · · · < Ck. Our algorithm
attributes some “height” hm to all the Cm, representing the maximum number of mutually
compatible correspondences inferior to Cm, which are all compatible with Cm. Obviously
the weight of (S1,S2) is

max
m=1,...,k

hm.

We initialize the height of each correspondence of shapes to 0. We find first the correspon-
dences of height 1, then 2, and so on, until each correspondence has its height computed.

To find the correspondences of height 1, we loop over the Cm, keeping the areas (a1, a2)
of the shapes of the last correspondence of height 1 found. Clearly, C1 is of height 1, so
we initialize a1 and a2 to, respectively, #Si1 and #S′j1 . C2 is of height 1 if and only if

Light version: some figures are not present

6.5. EXTENSIONS 159

#Si2 = a1, or #Si2 > a1 but #S′j2 ≤ a2, because otherwise C1 and C2 are compatible.
So if C2 is of height 1, we store it in h2 and update a1 and a2 to #Si2 and #S′j2 . In the
same manner, C3 is of height 1 if and only if it is not compatible with C1 and C2, which
amounts to comparisons of #Si3 to a1 and #S′j3 to a2. This is generalized in the following
statement:

Proposition 6.1 Let C1 = (Si1 , S
′
j1

), . . . , Ck = (Sik , S′jk
) be the correspondences of shapes

inside a given correspondence of sections, such that C1 < · · · < Ck for the order defined
in (6.10). For any m in {1, . . . , k} and h an integral number, if we know that hm ≥ h, we
have

hm = h ⇔

∀n < m,hn < h or

#Sim = a1, or #Sim > a1 and #S′jm
≤ a2 for (a1, a2) = (#Sin , #S′jn

),

n = max{1 ≤ p < m : hp = h}

We will use the following lemma:

Lemma 6.2 (Transitivity of compatibility relatively to order) If C < C ′ < C ′′

are correspondences of shapes in a correspondence of sections, if on one hand C and C ′

are compatible and on the other hand C ′ and C ′′ are compatible, then C and C ′′ are
compatible.

Proof.
1. We write C = (S1, S

′
1), C ′ = (S2, S

′
2) and C ′′ = (S3, S

′
3). The order of C and C ′

yields #S1 < #S2 (otherwise there is equality and S1 = S2, contradicting compatibility),
and the order of C ′ and C ′′, #S2 < #S3. We deduce #S1 < #S3.

2. The compatibility of C and C ′ implies then #S′1 < #S′2, and the compatibility of
C ′ and C ′′, #S′2 < #S′3, implying #S′1 < #S′3.

3. We proved that #S3 −#S1 and #S′3 −#S′1 are positive numbers, thus C and C ′′

are compatible. ¤

The proof of Proposition 6.1 is then:
Proof.

1. Suppose first hm = h, and that ∃n < m,hn = h. Take the largest such n, and a1,
a2 the areas of the corresponding shapes in Cn. Since Cn < Cm by hypothesis, we deduce
#Sim ≥ a1. Since hn = h, we have an increasing family F of h correspondences, the last
one being Cn, which are two by two compatible. If Cm were compatible with Cn, thanks
to Lemma 6.2, Cm would also be compatible with each correspondence in F , implying
hm ≥ h + 1. We deduce then #Sim = a1, or #Sim > a1 but #S′jm

≤ a2.
2. Conversely, if for all n < m, hn < h, we have hm ≤ 1 + maxn<m hn ≤ h, implying

hm = h since by hypothesis hm ≥ h. If we are in the second case of the alternative, we have

Light version: some figures are not present

160 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

that Cn and Cm are incompatible. Suppose that hm > h, then there is a shape Cp of height
h compatible with Cm, with Cp < Cm. By definition of n, we have Cp ≤ Cn and actually
not equality since Cn and Cm are not compatible. Thus Cp < Cn. But #Sip < #Sim ,
so that if #Sim = a1, we have #S′jp

≥ a2 (otherwise Cp and Cn would be compatible),
whereas a2 > #S′jm

(coming from Cn < Cm), which would imply #S′jp
> #S′jm

, contra-
dicting the compatibility of Cp and Cm. If #Sim > a1, we have by hypothesis #S′jm

≤ a2,
and two cases are to be examined: If #Sip < a1, the incompatibility of Cn and Cp yields
#S′jp

≥ a2, and a fortiori, #S′jp
≥ #S′jm

, showing that Cp and Cm are incompatible;
otherwise, #Sip = a1, implying #S′jp

> a2 and therefore #S′jp
> #S′jm

, proving also in-
compatibility. In all cases, a contradiction arises, we conclude that the assumption hm > h

cannot stand. ¤

This is the main result allowing to write the algorithm of extraction of the height
of each correspondence of shapes, illustrated in Algorithm 7. The complexity of this
algorithm is clearly O(k2), the step of sorting taking only O(k log k). The computation
for all the correspondences of sections is of order

k2
1 + k2

2 + · · ·+ k2
c

where c is the number of correspondences of sections, with

k1 + k2 + · · ·+ kc = N,

the number of correspondences of shapes. Thus the complexity is bounded by N2. In
practical cases, almost every ki is small, and the total computation of the weights is a
negligible step in terms of elapsed time, compared to the other steps.

If a maximal family of correspondences of shapes inside each correspondence of section
is wanted, this is very easy after the heights are computed: Start from the last correspon-
dence, go down until a correspondence of maximal height w is found, then resume the
loop until reaching a compatible correspondence of height w − 1, and so on. This is of
complexity O(k).

Votes

The weight of the vote for zoom/rotation of two correspondences of sections is chosen as
the product of the weights of the sections: we consider that each correspondence of shapes
in the first correspondence of sections votes with each one of the second correspondence
of sections, and that all these votes are identical. This is a fair hypothesis, since shapes
in a section are very close.

Light version: some figures are not present

6.5. EXTENSIONS 161

Algorithm 7 Computation of the heights of the correspondences of shapes inside a cor-
respondence of sections

Require: C1 < · · · < Ck {The ordered correspondences of shapes}
∀i = 1, . . . , k, hi ← 0
for h = 1 to k do {Determination of the correspondences of height h}

a1 ← +∞, a2 ← +∞
for p = h to k do

if hp = 0 then {Height of Cp not yet known}
if #Sip ≤ a1, or #Sip > a1 but #S′jp

≤ a2 then
hp ← h {The height of Cp is found}
a1 ← #Sip , a2 ← #S′jp

end if
end if

end for
end for

6.5.2 Other global displacements

The same method can be generalized to other global displacements without many changes,
such as affine or planar projective registration. The differences from the scheme explained
above are the following:

– The invariants used for matching must be modified so as to be invariants relatively
to the class of studied motion. Numerous invariants relatively to affine maps or
planar projective maps exist, see Reiss [66].

– The voting procedure must be modified, because two points and their corresponding
points are not sufficient. We need three for affine displacement and four for planar
perspective.

The first point requires to use higher order moments, which are more sensitive to noise
and sampling. The reliability of the invariants derived from them needs to be investigated.

The second point is not a theoretical problem, but a practical one: if we need three
points and their corresponding points to make one vote, the voting step becomes of com-
plexity O(N3), and if four points are necessary, O(N4). For a large number of corre-
spondences N , this becomes unrealistic. The best solution would be to have a means to
eliminate a priori a large number of correspondences.

6.5.3 Using the inclusion information

A strong geometrical information about the image is encoded in the tree, without being
used here: the order of shapes, that is, their inclusion. Indeed, if shapes A and B are
in image 1 with A ⊂ B, their corresponding shapes A′ and B′ need to be nested in the

Light version: some figures are not present

162 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

same order. This would lead us in the way of structural registration, such as finding
isomorphisms of subtrees. But this is not equivalent to finding the maximal isomorphisms
of subtrees between the two inclusion trees of shapes, because we know a number of
possible matchings between nodes of the trees.

6.5.4 Dealing with occlusions

One of the main problems occurring in image analysis is arguably due to occlusions. The
occlusion operation can be considered as the most basic event in images, as the addition
of waves for sounds.

In some weak sense, shapes are adapted to deal with possible occlusions: since we
fill the holes, and assuming the objects are full, a shape gets rid of its occluding object.
Unfortunately, a more common type of occlusion is when the occluding object covers
some part of the contour of the occluded object. This can imply that the detected shape
corresponds only to a part of the object, or worse, that we cannot isolate the object as a
shape, if for example it was a light object on a dark background and the occluding object
is brighter. Even provided the visible part of the object is a shape, its moments are biased
and it is likely to be unable to vote correctly.

A solution to this problem would be to consider the level lines of the images. Of
course, level lines are also disturbed by occlusions, so we have to consider minimal pieces
of level lines, minimal in the sense that they need to carry some information, but any
smaller piece would not. This amounts to consider parts of borders of shapes instead of
the shapes themselves.

Because these lines are quantized and noisy, we need to smooth them. But the s-
moothing method must not disturb the posterior estimated motion. In other words, the
estimated motion between two smoothed curves must be exactly the same as the one
between the two original curves. That means the smoothing must commute with the ad-
missible geometrical transforms. Since the most invariant smoothing of lines possible is
affine invariant, see Alvarez et al. [3], there is no hope of performing planar perspective
registration in such a way2. Once smoothed, characteristic affine invariant points must be
detected. Points of maximum curvature, that is, corner points, whereas affine invariant,
need thresholds to be detected, and since their curvature changes after an affine transfor-
m, they should be avoided. On the contrary, inflexion points are good candidates: Their
number decreases through the affine invariant smoothing. Their accurate location is hard
to find, since by definition the curve is almost straight in their neighborhood, but the
direction of the tangent at such points is very stable. Other affine invariant reliable direc-
tions are those of bitangent lines. Based on that, the curves can be segmented into parts,
each part can be coded by a few characteristics, and we can proceed with the matching

2But if we can have several somewhat local affine estimations, it would be possible to consider them as
tangent to the planar perspective transform and thus estimate it.

Light version: some figures are not present

6.5. EXTENSIONS 163

and the votes. This is a work in progress, the general method and first results are exposed
by Lisani et al. in [39].

Light version: some figures are not present

164 CHAPTER 6. CONTRAST INVARIANT IMAGE REGISTRATION

Light version: some figures are not present

Chapter 7

Experiments of image registration

In this chapter, we present a variety of real-world and synthetic examples of registration.
The real-world experiments are chosen difficult on purpose, each one emphasizing its own
type of difficulty. However, these difficulties are quite common case and happen frequently.
This shows that image registration is not a trivial task, and that all these difficulties must
be taken into account when devising a strategy of image registration.

7.1 Pose estimation

The classical problem of pose estimation is to find the orientation of a flat object viewed
from a fixed distance and perpendicularly to its plane. The goal is thus to recover a
rotation-translation. This is typically the first task to accomplish in automatic industrial
quality inspection on production lines. One object must be compared to a template image
to check its conformity. Small displacements are to be excepted in the process, and they
must be compensated prior to comparison with the template.

7.1.1 What time is it?

Our first experiment is about images of a watch taken at two different times (as the hands
witness) and with different poses, see Figure 7.1. The face of the watch was lain on the
glass of a scanner of average quality and two shots were taken, the watch being moved
and the hour changed between both. The good point for our algorithm is the multiplicity
of distinct marks on the face, of all sizes. A large number of them is not occluded by the
hands, raising hope for a good registration. Nevertheless, this is also challenging, for the
following reasons.

– The images are fairly noisy, this is particularly visible on zones which should be
uniform.

– The right image is a bit blurred.

165 Light version: some figures are not present

166 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.1: Two shots of the same watch at different time and with a slightly different
position.

– The hands move with a motion completely different from the global one, and are
occluding some shapes.

– Many shapes are present multiple times in the image, and some of them are rep-
resented a large number of times, especially the tick marks, but also some digits,
yielding concurrent motions.

– The structural rotational self-similarity could give a large number of votes for rota-
tions around the center of the watch, hiding the motion due to displacement.

The images are of approximate size 500 × 500. We keep only shapes of area at least
20 pixels and not meeting the frame (because shapes meeting the frame represent objects
occluded by the framing). Owing to the large number of meaningful shapes, we limit the
distance of two shapes extracted from both images not to exceed 50 pixels to allow them
to match. Without this limitation, the number of correspondences would be tremendously
high, making the election impossible to accomplish in a reasonable time. With the above
restrictions, the number of correspondences of shapes is 171, 015, involving 20, 308 shapes
in the left image and 19, 247 shapes in the right one. When the shapes are glued into
sections, this reduces to 7887 correspondences of sections, involving 4100 sections of the
left image and 3568 in the right one. When incompatibilities of correspondences of shapes
inside a correspondence of sections are resolved (as explained in Section 6.5.1), there
remains 49, 515 correspondences of shapes. The image reconstructed from the inclusion
tree when we keep only the shapes that match in the other image are shown in Figure 7.2.

Light version: some figures are not present

7.1. POSE ESTIMATION 167

Figure 7.2: The images reconstructed from the shapes of each image of Figure 7.1 that
have at least one corresponding shape in the other image. Shapes meeting the frame of
the image are voluntarily removed.

The election is performed in the following manner: we vote first for zoom/rotation (by
considering all pairs of correspondences of sections), determine the dominant one, apply
it to the left image (with arbitrary center of rotation) and then vote for the translation.
The sampling is chosen of 1 pixel for the translation, and scales are sampled equally
between 1

1.10 and 1.10 (we allow at most 10% of rate of change between the images) in 145
samples and the angle of rotation in 1450 samples between −π

2 and π
2 . These samplings are

chosen so that the vote of two correspondences of sections has the precision of one sample
on average. Notice that this accuracy highly depends on the distance of the (centers
of) shapes in the same image. Since the repartition of shapes in the images is a priori
unknown, this average distance cannot be computed, but this typically should be a fraction
of the highest distance in the image, its diagonal length. The important point to notice
here is that the sampling of the angle of rotation and of the change of scale depend on the
size of the image: we cannot expect the same accuracy in the parameters for small and
large images, but this is not a limitation; indeed, the important point is not the absolute
accuracy of the parameters, but the precision of the registration, in terms of number of
pixels.

With such samplings the dominant motion corresponds to almost no change of scale
(1.00006), a small rotation (0.44◦ clockwise) and a translation of (−13,−1) when the center
of rotation is the upper left corner of the image. The 2-D histograms of votes are shown
in Figure 7.3. The graph of these histograms around their maximum is shown in Figure

Light version: some figures are not present

168 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

7.4. The number of votes for zoom/rotation is much higher because this corresponds
to votes of pairs of correspondences, whereas the vote for the translation corresponds to
single correspondences. The precision is inspected in the following manner: we apply the
dominant motion to the left image and superimpose it on the right one (we take the mean
of two superimposed pixels), see Figure 7.5. Notice the resulting image is good, except
that each hand appears two times, because the hands move with a different motion.

A close inspection of the vote images witnesses the quasi self similarity in rotation
of these images: the two main secondary peaks in the image correspond precisely to the
shift of 1 minute tick, that is, the numbered ticks (see Figure 7.6). Figure 7.7 shows the
registration corresponding to these secondary peaks. The shifts of multiple ticks do not
appear because the distance becomes greater than 50 pixels. Once the zoom-rotation is
fixed, this quasi-invariance is found again in the election of the translation, in the form of
concentric circles.

Whereas globally satisfactory, this registration is not a total success. When we try to
reach subpixel accuracy, as explained in the previous chapter, we get a partial stroboscopic
effect due to the ticks in the bottom right part of the image, whereas the top left part is
correctly registered. Figure 7.8 shows the computed registration and Figure 7.9 the shapes
participating to the least squares estimate. The new zoom factor is 1.0003, the rotation
0.42◦ clockwise and the translation vector (−12.9, 0.0). A close look at the registered
images shows that the accuracy was not really improved, and small shifts remain present.
The estimated motion comprises some false correspondences: the computed motion is not
the right one. The reason is that some shapes in the bottom right part are considered as
matching correctly with several other shapes, and the average yields a bad result. The
reason this happens in the bottom right part is that the center of rotation was chosen as
the top left corner of the image, since the choice is arbitrary. A tolerance of error in the
angle of rotation yields a small shift in the shapes of near this center, selecting only the
right correspondences, whereas it authorizes a larger shift far from it (in the bottom right
part), making some correspondences coming from the stroboscopic effect compatible with
the dominant motion. This effect can happen in all images with high self similarity. The
solution to this would be to select more reliably the correspondences compatible with the
computed motion.

The images shown in Figure 7.9 can be interpreted as a kind of intersection of images.
The left image is reconstructed from the shapes that have been recognized at the right loca-
tion in the right image, and conversely. This is very close to what is proposed by Ballester
et al. in [6]: they extract connected components of bilevel sets ([λ ≤ u(x) ≤ µ]) and look
for a corresponding one in the same location in the other image. The correspondences are
established in a manner very similar to ours, by comparing moments, perimeter, and so on.
Each connected component of bilevel set having found a correspondent in the other image
is kept, and the image is reconstructed from them. This differs from our “intersection”
mainly because, apart from the fact that there is supposed to be no motion in their case,

Light version: some figures are not present

7.1. POSE ESTIMATION 169

Figure 7.3: The votes for the parameters of the similarity in the watch images of Figure
7.1. Left: the histogram of votes for the zoom factor (horizontal axis) and the angle of
rotation (vertical axis), the gray level being proportional to the number of votes. Right:
the histogram of votes for the translation in x (horizontal axis) and y (vertical axis).
Notice how the peaks in these histograms are sharp and unambiguous, raising confidence
in the estimated motion.

Light version: some figures are not present

170 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

0.992
0.994

0.996
0.998

1
1.002

1.004
1.006

1.008-0.2

0
0.2

0.4

0.6
0.8

1

0
1e+06
2e+06
3e+06
4e+06
5e+06
6e+06
7e+06
8e+06
9e+06

-18
-16

-14
-12

-10
-8

-6 -6

-4

-2

0

2

4

0

500
1000

1500

2000
2500

3000
3500

4000

Figure 7.4: The graphs of the histograms of votes of Figure 7.3 around their maximum.

Light version: some figures are not present

7.1. POSE ESTIMATION 171

Figure 7.5: Registration of the images of Figure 7.1. The two images are superimposed.
Left: superimposition without registration. Right: superimposition after application of
the estimated motion to the first image.

bilevel sets are not sufficient to reconstruct an image unambiguously. They have no tree
structure, and they define for each image two intersections: one for which each pixel get
the maximum of the lower thresholds of the remaining connected components of bilevel
sets containing it, the other one with the minimum of the upper thresholds. The inclusion
tree structure of shapes allows us to reconstruct one image of intersection for each original
image.

7.1.2 Another watch experiment

We show another example of registration of watch images (see Figure 7.10) taken in the
same conditions as in the previous experiment (the hand of seconds does not appear
straight because it moved during the scan). The images are of size 532× 529.

On the contrary to the previous example, the number of marks is much reduced,
and the invariance relatively to rotation is very strong. This makes the estimate of the
rotation difficult. Indeed, the correlation method fails in its estimate of the angle: the
explanation lies in the rotational invariance, as the Fourier spectra show (see Figure 7.11).
Remember that the estimate of the rotation is simply a correlation along circles of the
Fourier spectra (modulus of the Fourier coefficients). No privileged direction appears in
the Fourier spectrum, so the correlation result is driven by the border effects (resulting in
the strong horizontal and vertical axes through the origin). This gives an estimate of no
rotation.

Light version: some figures are not present

172 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.6: The votes for the similarity parameters in the registration of the watches
in Figure 7.1, as in Figure 7.3, but with a nonlinear change of contrast enhancing dark
pixels. This makes some secondary peaks visible. Notice in particular both symmetric
main secondary peaks in the histogram for zoom/rotation (left). They correspond to
rotations of 1 minute clockwise and counter clockwise.

Light version: some figures are not present

7.1. POSE ESTIMATION 173

Figure 7.7: The registrations corresponding to the main secondary peaks in the histogram
of votes for zoom/rotation of the images of Figure 7.1. They correspond to a rotation
of 6◦ clockwise (right image) and counter clockwise relatively to the dominant motion.
Notice the ticks are perfectly registered in both images, showing that the secondary peaks
correspond to their votes.

Figure 7.8: The registration of the image of Figure 7.1 obtained by least squares estimate
of the electorate of the dominant motion. The result is fairly deceptive, due to the mixing
of concurrent incompatible motions.

Light version: some figures are not present

174 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.9: The images reconstructed from the shapes of each image of Figure 7.1 involved
in a correspondence participating to the least squares estimate. The result seems fairly
coherent, except some shapes which appear in one image and not in the other one.

Figure 7.10: A set of images of a watch, used to experiment the registration method.

Light version: some figures are not present

7.1. POSE ESTIMATION 175

Figure 7.11: The logarithm of the Fourier spectra of the images in Figure 7.10. No
privileged direction appears, except the coordinates axes, yielded by border effects. This
shows the quasi invariance of the image relatively to rotation, explaining the failure of
registration by correlation.

We led the experiment with the same parameters as in the previous example. We get
5072 shapes in left image and 4960 shapes in right image having a correspondence, with
the total number of correspondences of shapes amounting to 9713. Figure 7.12 shows the
shapes having a matching shape in the other image. We have 1930 objects in left image
and 1936 in right image. The correspondences of shapes induce 1711 correspondences of
objects, and only 4101 of them remain compatible within their correspondence of objects.
The histograms of votes are shown in Figure 7.13. Notice that in this case also the peaks
are sharp and the dominant motion unambiguous.

The estimated scale factor is very close to 1 (1.0008), the angle of rotation 2.34◦

clockwise and the translation vector (13,−12) once the rotation center is chosen as the
upper left corner. The superimposition of the images before and after registration is shown
in Figure 7.14. The original images are almost registered in translation but not in rotation.
The estimated registration is visually very accurate.

The a posteriori least squares estimate gives very close results: a zoom factor of 1.0002,
the same rotation and as translation vector (13.1,−11, 6). The shapes having a correspond-
ing shape in the other image compatible with the dominant motion, that is, the shapes
involved in correspondences participating to the least squares estimate, are shown in Fig-
ure 7.15. Notice that all visually important shapes seem to be present, with the notable
exception of the hands, which do not participate to the dominant motion.

Light version: some figures are not present

176 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.12: The images reconstructed from the shapes of the images of Figure 7.10 having
a corresponding shape in the other image.

Figure 7.13: The votes for the similarity parameters in the registration of the images of
Figure 7.10. Left: vote for scale factor (horizontal axis) and angle of rotation (vertical
axis). Right: vote for translation vector.

Light version: some figures are not present

7.1. POSE ESTIMATION 177

Figure 7.14: Results of superimposition of the images of Figure 7.10 before (left) and
after (right) applying the estimated similarity. The original images are almost registered
in translation, but not in rotation (the letters are blurred and hardly readable). The
registration gives a good match.

Figure 7.15: The shapes of each image of Figure 7.10 having a matching shape in the other
image, whose correspondence is compatible with the estimated dominant motion.

Light version: some figures are not present

178 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

7.2 Similarity

We perform a full similarity estimate on the Mona Lisa images shown in Figure 7.16. The
left image, of size 374× 562, is a scanned photograph. The right image, of size 560× 864,
is extracted from a database on the World Wide Web. These images are a real challenge
from the point of view of registration, for the following reasons:

– There is a strong contrast change between the images.

– The zoom factor is important.

– The images are of poor quality. Moreover, they come from different sources, each
adding its own type of noise.

– Strong edges and clearly visible details are scarce. The style of Da Vinci relies on
gradations and smooth contrasts, the associated level lines become very noisy in the
digital image.

– It is not ensured that the global motion is a similarity. A small difference in the angle
from which the picture was photographed could yield a small projective transform.

There are 925 sections in the left image, and 8920 in the right one. The number of
correspondences of shapes is 6718, which translate into 3842 correspondences of sections.
Parts of the histograms of votes are shown in Figure 7.17. Notice that peaks are not very
sharp. The estimated parameters are a zoom factor of 1.54, a rotation of 1.34◦ clockwise
and a translation of (−18.5,−0.4).

The superimposition of the images is shown in Figure 7.18. The result is globally
correct, although small shifts can be observed in the lower part. When we try to register
them by hand, we can observe that no similarity gives perfect result. The transformation
is in fact a bit more complex, affine or maybe projective.

7.3 Accuracy

We investigate in this section the accuracy of the computed registration, and particularly
the question of whether subpixel accuracy is reached by that method. However, we want
to make the experiment “realistic”. This means that the conditions in which the images
we register are created must be conform to what real captors do. In particular, we do
not deal with images of functions of simple analytic form. Therefore, our procedure is
the following: we take an image of large size and subsample it by some factor; the second
image is created by translating the original image by a small amount (typically, not a
multiple of the sampling rate) and then subsampling it. In this manner, the shift between
the two images is really a fraction of pixel. We compare the estimated translation to this
shift.

Light version: some figures are not present

7.3. ACCURACY 179

Figure 7.16: The Mona Lisa images used to test the similarity registration.

Light version: some figures are not present

180 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.17: The histograms of votes, around their maximum, in the registration of the
Mona Lisa images of Figure 7.16. Left: votes for zoom (horizontal axis)/rotation (vertical
axis). Right: votes for the translation.

The crucial point in this procedure is that we do not smooth the image before sampling
it: we voluntarily create aliasing. The reason is that almost all captors do not sample the
continuous image smoothed by the lens at Nyquist rate. Most, if not all, the images
we deal with, are not sampled in the conditions of Shannon reconstruction theorem. If
this were the case, the registration by correlation would not only reach subpixel accuracy,
as reported in [87], but would have a theoretical infinite accuracy. This would be the
definitive method. But in real cases, the images are not sampled according to Nyquist
rate, so their interpolation by cardinal sines does not correspond to the original continuous
domain image, so the accuracy of the registration by correlation can be quite bad, all the
more that the sampling rate is lower than Nyquist requirement.

The image used to lead our investigations is a satellite image of captor Spot 2, of size
6000× 6000. We sample it by a factor ten in x and y, that is, we keep only one pixel for
100 pixels in the original image. This is our left image, shown in Figure 7.19. Notice this
is not an easy image to deal with, it is fairly oscillatory. The right image is created by
shifting the original image by n pixels before sampling, n = 1, . . . , 9. The true translation
in our registration experiment is thus n/10.

In the experiments, the number of shapes of area larger than 20 pixels and not meet-
ing the frame of the image, is around 20, 000 in each image. This induces around 30, 000
correspondences of shapes. The shapes are grouped into sections, whose number is ap-
proximatively 8000 in each image, and we have 8500 correspondences of sections. The
errors in the estimated translation are reported in Figure 7.20. As expected, the error is
all the more important that the real shift is close to half a pixel. Nevertheless, the errors

Light version: some figures are not present

7.3. ACCURACY 181

Figure 7.18: Superimposition of the two images of Figure 7.16 after application of the
estimated similarity registration.

Light version: some figures are not present

182 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Figure 7.19: The Spot 2 image we use to test the accuracy of our registration method. Its
size is 600×600, constructed by sampling of a factor 10 along each axis the original image
of size 6000× 6000.

Light version: some figures are not present

7.3. ACCURACY 183

tx t′x |tx − t′x| ty t′y
0.1 0.078 0.022 0 0.013
0.2 0.138 0.062 0 0.000
0.3 0.230 0.070 0 0.040
0.4 0.289 0.111 0 0.138
0.5 0.457 0.043 0 0.049
0.6 0.531 0.069 0 0.163
0.7 0.767 0.067 0 0.046
0.8 0.834 0.034 0 0.001
0.9 0.912 0.012 0 0.008

Figure 7.20: The error in the estimated translation for various shifts. See text for details.
t is the true translation vector, t′ is the estimated translation.

remain moderate, and we could talk about an overall tenth of pixel accuracy.
However, this accuracy depends probably on the number of shapes in the image. Since

the estimates are the results of an average, this can be expected to be all the lower than
the image is rich in details, on the contrary to registration by correlation, for which the
accuracy is independent of the size of the image (if we neglect border effects).

Light version: some figures are not present

184 CHAPTER 7. EXPERIMENTS OF IMAGE REGISTRATION

Light version: some figures are not present

Chapter 8

Conclusion

8.1 Strong points of this thesis

The main novelties of this thesis are the following:

– A representation of images based on geometry, complete and not redundant, with
an easy to use structure, the tree.

– Important pieces of information are encoded in the tree, like extrema and holes.

– A fast algorithm to compute this tree.

– A definition of the grain filter and a proof of its selfduality for continuous images.

– An adaptive quantization of the image preserving the main topological information.

– A contrast invariant registration of images, not disturbed by secondary displace-
ments, and of good precision even in unfavorable cases.

8.2 Possible extensions

Among the possible extensions of this work, we distinguish particularly the following:

– Use of the tree for compression. The adaptive quantization shows that the main
lines of the images are not very numerous, and methods of compression such as in
[24] would be possible.

– Image comparison through the tree structures (for example, detection of cuts in
video streams).

– Registration in the affine or planar projective case.

– True management of occlusions. First results in this direction are presented in [39].

185 Light version: some figures are not present

186

8.3 Open issues

The introduction of the tree structure of shapes to represent the images raises some new
problems.

– From a family of connected sets having an inclusion tree structure, how to attribute
to each one a gray level so that the reconstructed image would have as associated
tree precisely this tree? This would allow us to define a new notion of local contrast
change, that is a contrast change that do not affect the tree structure, and to say
when two images are equivalent modulo such a local contrast change.

– Find an optimal local contrast change (in the sense defined above) using the tree.

– Study the stability of the tree. Namely: do two slightly different images have close
tree structures? Do similar images have similar tree structures? A partial answer is
positive, since as we have seen, shapes of sufficient area seem to be reliable, as the
good results of the grain filter witness.

– Construction of reliable invariant characteristics for the shapes in purpose of the
correspondences used in the registration process. Numerous articles about invariant
geometric features exist, but to our knowledge, no definitive ones are exhibited yet.

Light version: some figures are not present

Bibliography

[1] A.V. Aho, J.E. Hopcroft, and J. Ullman. Data Structures and Algorithms. Addison-
Wesley, 1983.

[2] L. Alvarez, Y. Gousseau, and J.M. Morel. Scales in natural images and a consequence
on their BV norm. In Proc. of the 2nd Workshop on Scale-Space Theories in Computer
Vision, pages 247–258, Corfu, Greece, 1999.

[3] L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel. Axioms and fundamental
equations of image processing: Multiscale analysis and P.D.E. Archive for Rational
Mechanics and Analysis, 16(9):200–257, 1993.

[4] L. Ambrosio, V. Caselles, S. Masnou, and J.M. Morel. The connected components of
sets of finite perimeter. Preprint.

[5] C. Ballester, V. Caselles, and J.M. Morel. Topological description of topographic
maps and applications. In preparation, 2000.

[6] C. Ballester, E. Cubero-Castan, M. González, and J.M. Morel. Contrast invariant
image intersection. Preprint CEREMADE, 1998.

[7] L.G. Brown. A survey of image registration techniques. ACM Computing Surveys,
24(4):325–376, December 1992.

[8] J. Canny. A variational approach to edge detection. In National Conference on
Artificial Intelligence, pages 54–58, Washington DC, August 1983.

[9] V. Caselles, B. Coll, and J.M. Morel. A Kanisza program. Progress in Nonlinear
Differential Equations and their Applications, (25), 1996.

[10] V. Caselles, B. Coll, and J.M. Morel. Is scale-space possible? In Proc. of the 1st

Workshop on Scale-Space Theories in Computer Vision, Utrecht, the Netherlands,
1997.

[11] V. Caselles, B. Coll, and J.M. Morel. Topographic maps and local contrast changes
in natural images. International Journal of Computer Vision, 33(1):5–27, September
1999.

187 Light version: some figures are not present

188 BIBLIOGRAPHY

[12] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapiro. Shape preserving local contrast
enhancement. In Proceedings of International Conference of Image Processing, pages
I:314–xx, 1997.

[13] V. Caselles, J.L. Lisani, J.M. Morel, and G. Sapiro. Shape preserving local histogram
modification. IEEE Transactions on Image Processing, 8(2):220, February 1999.

[14] F. Catté, F. Dibos, and G. Koepfler. A morphological scheme for mean curvature
motion and applications to anisotropic diffusion and motion of level sets. SIAM, (32),
December 1995.

[15] S.H. Chang, F.H. Cheng, W.H. Hsu, and Z. Wu. Fast algorithm for point patten
matching: Invariant to translations, rotations and scale changes. Pattern Recognition,
30(2):311–320, 1997.

[16] J.L. Cox and D.B. Karron. Digital Morse theory. Manuscript available from
http://www.casi.net, 1998.

[17] E. DeCastro and C. Morandi. Registration of translated and rotated images using
finite Fourier transforms. PAMI, 9(5):700–703, September 1987.

[18] L.C. Evans and R.F. Gariepy. Measure Theory and Fine Properties of Functions.
Studies in Advanced Mathematics. CRC Press, 1992.

[19] O. Faugeras. Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT
Press, Cambridge, Massachusetts, 1993.

[20] O. Faugeras and R. Keriven. Some recent results on the projective evolution of
2d curves. In Proceedings of IEEE International Conference on Image Processing,
volume 3, pages 13–16, Washington, October 1995.

[21] C. Fiorio. A topologically consistent representation for image analysis: the frontiers
topological graph. In Proceedings of the 6th Conference of Discrete Geometry for
Computationial Imagery, Lyon, France, 1996.

[22] C. Fiorio. Border map: A topological representation for nd image analysis. In
Proceedings of Conference of Discrete Geometry for Computationial Imagery, pages
242–257, Marne la Vallée, France, March 1999.

[23] C. Fiorio. Topological operators on the frontiers topological graph. In Proceedings of
Conference of Discrete Geometry for Computationial Imagery, pages 207–217, Marne
la Vallée, France, March 1999.

[24] J. Froment. A compact and multiscale image model based on level sets. In Proc.
of the 2nd Workshop on Scale-Space Theories in Computer Vision, pages 152–163,
Corfu, Greece, 1999.

Light version: some figures are not present

BIBLIOGRAPHY 189

[25] M. Gangnet, J.C. Hervé, T. Pudet, and J.M. Van Thong. Incremental computation
of planar maps. Digital Pattern Recognition Letters, (5), 1989.

[26] F. Guichard and J.M. Morel. Image iterative smoothing and P.D.E.’s. Book in
preparation, 2000.

[27] H. Hahn. Über die Komponenten offener Mengen. Fund. Math., 2:189–192, 1921.

[28] T.S. Huang, G.J. Yang, and G.Y. Tang. A fast two-dimensional median filtering
algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing, 27:13–18,
February 1979.

[29] R.A. Hummel. Representations based on zero-crossings in scale-space. In Proceedings
of the IEEE International Conference of Computer Vision and Pattern Recognition,
pages 204–209, 1986.

[30] J.J. Koenderink. The structure of images. Biological Cybernetics, 50:363–370, 1984.

[31] T.Y. Kong and A. Rosenfeld. Digital topology: Introduction and survey. Computer
Vision, Graphics and Images Processing, 48(3):357–393, December 1989.

[32] T.Y. Kong and A. Rosenfeld. If we use 4- or 8-connectedness for both the objects
and the background, the Euler characteristic is not locally computable. Pattern
Recognition Letter, 11:231–232, 1990.

[33] V.A. Kovalevsky. Finite topology as applied to image analysis. Computer Vision,
Graphics and Image Processing, 46(2):141–161, May 1989.

[34] A.S. Kronrod. On functions of two variables. Uspehi Mathematical Sciences, 5(35),
1950. (in Russian).

[35] C. Kuratowski. Topologie, I et II. Jacques Gabay, 1992.

[36] C.N. Lee, T. Poston, and A. Rosenfeld. Holes and genus of 2d and 3d digital images.
Graphical Models and Image Processing, 55(1):20–yy, January 1993.

[37] C.N. Lee and A. Rosenfeld. Computing the Euler number of a 3d image. In Proceedings
of International Conference of Computer Vision, pages 567–571, 1987.

[38] P. Lienhardt. Topological methods for boundary representation: A survey. Computer
Aided Design, 23(1):59–81, 1989.

[39] J.L. Lisani, L. Moisan, P. Monasse, and J.M. Morel. Affine invariant mathematical
morphology applied to a generic shape recognition algorithm. In Proceedings of In-
ternational Symposium of Mathematical Morphology, San Francisco, California, June
2000.

Light version: some figures are not present

190 BIBLIOGRAPHY

[40] R. Lumia. A new three-dimensional connected components algorithm. Computer
Vision, Graphics and Image Processing, 23(2):207–217, August 1983.

[41] R. Lumia, L.G. Shapiro, and O.A. Zuniga. A new connected components algorithm
for virtual memory computers. Computer Vision, Graphics and Image Processing,
22(2):287–300, May 1983.

[42] S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, New York, 1998.

[43] P. Maragos and F. Meyer. Nonlinear P.D.E.s and numerical algorithms for modeling
levelings and reconstruction filters. In Proc. of the 2nd Workshop on Scale-Space
Theories in Computer Vision, pages 363–374, 1999.

[44] P. Maragos and R.W. Schafer. Morphological filters. part I: Their set-theoretic anal-
ysis and relations to linear shift-invariant filters. IEEE Transactions on Acoustics,
Speech and Signal Processing, 35:1153–1169, 1987.

[45] P. Maragos and R.W. Schafer. Morphological filters. part II: Their relations to median,
order-statistic, and stack filters. IEEE Transactions on Acoustics, Speech and Signal
Processing, 35:1170–1184, 1987.

[46] D. Marr. Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. W.H. Freeman and Co., 1982.

[47] D. Marr and E.C. Hildreth. Theory of edge detection. Proceedings of the Royal Society
of London, B-207:187–217, 1980.

[48] S. Masnou. Filtrage et Désocclusion d’Images par Méthodes d’Ensembles de Niveau.
PhD thesis, Université Paris IX-Dauphine, 1998.

[49] S. Masnou. Image restoration involving connectedness. In Proceedings of the 6th

International Workshop on Digital Image Processing and Computer Graphics, volume
3346. SPIE, 1998.

[50] G. Matheron. Random Sets and Integral Geometry. John Wiley, N.Y., 1975.

[51] F. Meyer. Mathematical Morphology and Its Application to Signal and Image Process-
ing, chapter From Connected Operators to Levelings. Kluwer Academic Publishers,
h. heijmans and j. roerdink edition, 1998.

[52] F. Meyer. Mathematical Morphology and Its Application to Signal and Image Pro-
cessing, chapter The Levelings. Kluwer Academic Publishers, H. Heijmans and J.
Roerdink edition, 1998.

Light version: some figures are not present

BIBLIOGRAPHY 191

[53] F. Meyer and P. Maragos. Morphological scale-space representation with levelings.
In Proc. of the 2nd Workshop on Scale-Space Theories in Computer Vision, pages
187–198, 1999.

[54] Y. Meyer. Wavelets: Algorithms and Applications. SIAM, Philadelphia, 1993.

[55] J. Milnor. Morse Theory. Number Study 51 in Annals of Mathematics Studies.
Princeton University Press, 1969.

[56] L. Moisan. Affine plane curve evolution: A fully consistent scheme. IEEE Transac-
tions on Image Processing, 7(3):411–420, March 1998.

[57] P. Monasse. Contrast invariant image registration. In Proceedings of International
Conference on Acoustics, Speech and Signal Processing, volume 6, pages 3221–3224,
Phoenix, Arizona, 1999.

[58] P. Monasse and F. Guichard. Scale-space from a level lines tree. In Proceedings of
the 2nd Workshop on Scale-Space Theories in Computer Vision, September 1999. to
be republished as an article in Journal of Visual Communication and Image Repre-
sentation.

[59] P. Monasse and F. Guichard. Fast computation of a contrast-invariant image repre-
sentation. IEEE Transactions on Image Processing, May 2000.

[60] J.M. Morel and S. Solimini. Variational Methods in Image Processing. Birkhäuser,
1994.

[61] D. Mumford and J. Shah. Optimal approximations by piecewise smooth function-
s and variational problems. Communications on Pure and Applied Mathematics,
XLII(5):577–685, 1988.

[62] M.H.A. Newman. Elements of the Topology of Plane Sets of Points. Dover, 1992.

[63] M. Nitzberg and D. Mumford. The 2.1-D sketch. In Proceedings of the 3d International
Conference on Computer Vision, pages 138–144, Osaka, Japan, 1990.

[64] S. Osher and L.I. Rudin. Feature-oriented image enhancement using shock filters.
SIAM Journal of Numerical Analysis, 27(4), 1990.

[65] B.S. Reddy and B.N. Chatterji. An FFT-based technique for translation, rotation,
and scale-invariant image registration. IEEE Transactions on Image Processing,
5(8):1266–1271, August 1996.

[66] T.H. Reiss. Recognizing Planar Objects Using Invariant Image Features, volume 676
of Lecture Notes in Computer Science. Springer Verlag, 1993.

Light version: some figures are not present

192 BIBLIOGRAPHY

[67] A. Rosenfeld. Connectivity in digital pictures. Journal of the ACM, 17(1):146–160,
January 1970.

[68] A. Rosenfeld. Arcs and curves in digital pictures. Journal of Applied and Computa-
tional Mathematics, 20(1):81–87, January 1973.

[69] A. Rosenfeld. Adjacency in digital pictures. Information and Control, 26, 1974.

[70] A. Rosenfeld and A.C. Kak. Digital Picture Processing. Academic Press, 1982.

[71] A. Rosenfeld and J.L. Pfaltz. Sequential operations in digital picture processing.
Journal of Applied and Computational Mathematics, 13(4):471–494, October 1966.

[72] L.I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 1990.

[73] P. Salembier. Morphological multiscale segmentation for image coding. IEEE Trans-
actions on Signal Processing, 38(3):359–386, 1994.

[74] P. Salembier. Region-based filtering of images and video sequences: A morphological
viewpoint. preprint, 2000.

[75] P. Salembier, P. Brigger, J.R. Casas, and M. Pardas. Morphological operators for
image and video compression. IEEE Transactions on Image Processing, 5(6):881–
898, June 1996.

[76] P. Salembier and L. Garrido. Binary partition tree as an efficient representation for
image processing, segmentation, and information retrieval. IEEE Transactions on
Image Processing, 9(4):561, April 2000.

[77] P. Salembier, F. Meyer, P. Brigger, and L. Bouchard. Morphological operators for
very low bit rate video coding. In Proceedings of International Conference of Image
Processing, page 19P1, 1996.

[78] P. Salembier, A. Oliveras, and L. Garrido. Antiextensive connected operators for
image and sequence processing. IEEE Transactions on Image Processing, 7(4):555–
570, April 1998.

[79] P. Salembier and H. Sanson. Robust motion estimation using connected operators.
In Proceedings of International Conference of Image Processing, pages I:77–xx, 1997.

[80] P. Salembier and J. Serra. Flat zones filtering, connected operators and filters by
reconstruction. IEEE Transactions on Image Processing, 1995.

[81] G. Sapiro and A. Tannenbaum. Affine invariant scale-space. International Journal of
Computer Vision, 11(1):25–44, August 1993.

Light version: some figures are not present

BIBLIOGRAPHY 193

[82] R. Sedgewick. Algorithms in C++: Fundamentals, Data Structures, Sorting, Search-
ing. Addison-Wesley, 3 edition, 1999.

[83] J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York,
1982.

[84] J. Serra. Introduction to mathematical morphology. Computer Vision, Graphics and
Image Processing, 35(3):283–305, September 1986.

[85] J. Serra and P. Salembier. Connected operators and pyramids. In Proceedings of SPIE
Conference on Image Algebra and Mathematical Morphology, volume 2030, pages 65–
76, San Diego, California, 1993.

[86] B.M. ter Haar Romeny, editor. Geometry-Driven Diffusion in Computer Vision.
Kluwer Academic Publishers, 1994.

[87] Q. Tian and M.N. Huhns. Algorithms for subpixel registration. Computer Vision,
Graphics and Image Processing, 35(2):220–233, August 1986.

[88] L. Vincent. Grayscale area openings and closings, their efficient implementation and
applications. In J. Serra and Ph. Salembrier, editors, Proceedings of the 1st Workshop
on Mathematical Morphology and its Applications to Signal Processing, pages 22–27,
Barcelona, Spain, 1993.

[89] L. Vincent. Morphological area openings and closings for grey-scale images. In Pro-
ceedings of the Workshop Shape in Picture: Mathematical Description of Shape in
Gray-Level Images, pages 197–208, Driebergen, The Netherlands, 1994. Springer,
Berlin.

[90] C.Y. Wang, H. Sun, S. Yada, and A. Rosenfeld. Some experiments in relaxation
image matching using corner features. Pattern Recognition, 16(2):167–182, 1983.

[91] Y. Wang and P. Bhattacharya. Hierarchical stereo correspondence using features of
gray connected components. In Proceedings of IEEE International Conference on
Image Processing, pages 264–267, Santa Barbara, California, 1997.

[92] M. Wertheimer. Untersuchungen zur Lehre der Gestalt, ii. Psychologische Forschung,
(4):301–350, 1923.

[93] A.P. Witkin. Scale-space filtering. In International Joint Conference on Artificial
Intelligence, pages 1019–1022, Karlsruhe, 1983.

[94] L. Yaroslavsky and M. Eden. Fundamentals of Digital Optics. Birkhäuser, 1996.

Light version: some figures are not present

