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Fast computation of a contrast-invariant image representation
Pascal Monasse, Frédéric Guichard

Abstract— This article sets out a new representation of an im-

age which is contrast independent. The image is decomposed

into a tree of “shapes” based on connected components of level

sets, which provides a full and non-redundant representation of

the image. A fast algorithm to compute the tree, the Fast Level

Lines Transform (FLLT), is explained in details. Some simple

and direct applications of this representation are shown.
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I. Introduction

IMAGE representations can be different depending on their
purpose. For a deblurring, restoration, denoising purpose,

the representations based on the Fourier transform are gener-
ally the best since they rely on the generation process of the
image (Shannon theory), and/or on the frequency models of
the degradation as for additive noise, or spurious convolution k-
ernel. The wavelets theory [1], [2], achieves a localization of the
frequencies. However, from the image analysis point of view, the
preceding representations are not quite well adapted due to the
fact that the wavelets are not translation invariant, the Fourier
transform is non local and therefore very window-dependent,
and both of them have quantized observation scales.

Scale-space and edge detection theories propose to represen-
t the images by some “significant edges”. The algorithms are
generally in two parts (which can be merged), first the images
are linearly or not smoothed [3], [4], and second an edge detec-
tor is applied on the smoothed images. The earliest scale-space
based “edges” representation is the zero-crossing of the Lapla-
cian across the Gaussian pyramid (see figure 1). According to
David Marr, those zero crossings represent the “raw primal s-
ketch” of the image, that is the information on which further
vision algorithms should be based [5], [6]. Many new devel-
opments and improvements have been proposed for detecting
“edges”, as for example in [7].

In general, the “edges” extraction can also be formulated
variationaly [8], [9]. The image is approximated by a func-
tion that stands in a class where “edges” are properly defined.
(An example of simple class is the piecewise constant images
having a bounded discontinuity length. With such a class, the
boundaries of the approximated function are interpreted as the
“edges”). Then, a balance between how close and how complex
the approximation is (e.g. the complexity can be the length
of the boundary), defines a scaled representation of the image.
Despite the generality of the approach (somehow everything is
variational), it suffers from the fact that there is no theory that
says what should be the model. These representations by the
“edges” suffer, according to us, from two major drawbacks that
have been discussed (see [10], [11], [2]. . . ) but not solved with-
in the scale-space theory. First, the geometrical representation
of the edges is incomplete: it does not allow a full reconstruc-
tion of the image. Second, the decomposition in scale yields a
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ville, F-94114 Arcueil Cedex. France. E-mail: fguichar@ceremade.dauphine.fr and

Cognitech, Inc. 225 Sth Lake Ave, Pasadena CA 91101.

Fig. 1. Original scale space theory. To extract more global structure from

an image, convolutions with Gaussian of variances which are powers of

2 are performed. One computes the Laplacian of the resulting smooth

images and displays the lines along which the Laplacian changes sign:

the so called “zero crossings of the Laplacian”. Up: we display the

results of the smoothing, and the respective kernels of scale 1, 2 then

4, from left to right. Down: we display the zero-crossing of the Lapla-

cian, and the kernels that correspond to the Laplacian at the scales

used upward.

redundant representation.
Another problem is linked to the fact that image gray level is

not an absolute data, since in many cases the contrast function
is captor dependent and not known. E.g. for natural images,
the contrast depends on the type of the camera, on the dig-
italization process (gray level quantization), brightness of the
weather. . . Despite this instability, the perception of shape of
the objects might “look” the same in many different screens, us-
ing different cameras. . . The invariance under change of contrast
has been first stated as a Gestalt principle by Wertheimer [12].
Matheron and after him Serra proposed a “morphological” rep-
resentation of images by their level sets [13], [14]. It yields a
complete, contrast invariant representation of the images which
does not depend on parameters. A recent variant of this rep-
resentation is proposed in [15] by considering the boundary of
these sets, that is the level lines or “topographic map”.

In this paper, we discuss a decomposition of the images in-
to the connected components (cc) of their level lines, where in
addition the components can be structured into a tree represent-
ing their geometrical inclusions. We propose a fast algorithm
to perform this decomposition. And, at last, we will see that it
is well adapted to image manipulation such as image simplifi-
cation, comparison. . .

II. From level sets to interior of level lines

We consider the following model for an image u. u is a func-
tion from a rectangle Ω = [0, W )×[0, H) to IR being constant on
each “pixel” [j, j + 1)× [i, i + 1), of value in the set 0, 1, . . . , U
(usually, U = 255). It is convenient to extend the image on
the plane IR2 by setting u = u0 outside Ω where u0 is an ar-
bitrary fixed real value. Other different models can also be
considered (including the cases of finite support upper or lower
semi-continuous functions).

A. Representations invariant under global contrast change

Given an image u, we call upper level set Xλ of value λ and
lower level set Xµ of value µ the subsets of IR2:

Xλ = {x ∈ IR2, u(x) ≥ λ} (1)
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Fig. 2. Even if the two gray squares have exactly the same gray, they

might appear different. It seems that our visual system is in difficulty

to say if two separated points have the same intensity. However,

within each square the intensity is perceived as uniform.

Fig. 3. Level lines description of the image of figure 2. (The arrows

represent the comparisons “brighter than” that are stored but not

represented in the image.) Note that this representation does not

allow to compare the gray level of the small squares.

Xµ = {x ∈ IR2, u(x) ≤ µ}. (2)

The data of the family of the Xλ (or of the family of the Xµ),
is sufficient to reconstruct the image [13], [16], [17]:

u(x) = sup {λ / x ∈ Xλ} = inf {µ / x ∈ Xµ}. (3)

A second property is their global invariance by contrast change.
We say that two functions u and v have globally the same lev-
el sets if for every λ there is µ such that Xµv = Xλu, and
conversely. If we apply to u a contrast change, that is, an in-
creasing function g, then v = g(u) and u have globally the same
level sets. Conversely, assume that two functions u and v have
globally the same level sets, then v differs from u only by a
contrast change (∃g, such that v = g(u)). Therefore, the set
of the level sets is a contrast independent representation of the
image. For example, the level set description is often used to
design contrast invariant filters.

Note that the level sets are nested; the family of upper (resp.
lower) level sets is decreasing (resp. increasing):

∀λ ≤ µ, Xλ ⊃ Xµ, Xλ ⊂ Xµ. (4)

B. Representations invariant under local change of contrast

We believe that the representation of an image by its set
of level sets suffers from the same problem as the frequencies
based representation: the basic “atoms” (here level sets) are
global within the image. Regardless of their distance, the fact
that two points have the same gray level is strongly coded in
that representation. Such points are in the same “atom”.

Now, it is not clear if our visual system can in general say
whether or not two separated pixels have the same gray level
(see figure 2). However, such a comparison seems to be per-
formed successfully locally: each of the small squares of figure 2
appears to have an uniform intensity, in the sense that it is
perceptually impossible to separate them into smaller pieces.

So, leaving now analogy with perception, our model is:
We assume our sensor is such that each pixel knows only if

it is brighter, equal, or darker than its neighbor pixels, and that
these comparisons can be propagated. (5)

What is then the remaining information left? The answer is
roughly in the lines of the figure 3. These lines are the bound-
aries of the level sets of the image, that is the level lines. In
addition to these lines, is left for each line whether or not the
interior is brighter than the exterior.
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Fig. 4. The trees of connected components of upper and lower level sets

of a simple image.

This representation does not differ too much with respect to
the set of level sets, since we keep their boundaries. But now,
all connected components of the level sets are de-coupled. A
local and contrast invariant representation of the images is the
set of the connected components of all the level sets (the local-
ity is then driven by the connectedness). The idea of defining
connected components of gray-level based regions in the image
is proposed in [18], [19], [20] (see also in [20] the references of
chapter 8) in order to define adaptive filtering and in [21] where
it is explicitly aimed at stereo matching. However, the regions
considered in these papers are not contrast invariant.

C. The inclusion tree

The relation (4) states that the level sets are nested. When
going from the whole level sets to their connected components,
these relations are of course still true. Now, a connected com-
ponent can contain several connected components. These inclu-
sions can be represented into a tree, as shown in figure 4. As we
can see, the cc’s of upper and lower level sets trees differ. In ad-
dition, we see that we end up with a non natural description of
the inclusion. Naturally, in the example of figure 4, one would
have expected to have the two small squares included into the
gray rectangle, and included into the white background. But
the inclusion is for these trees mostly driven by the gray level
rather than by the geometrical inclusion. At last, we see that
we need both trees if we want to have the two small squares
represented, since each of them appears in one description, and
not in the other.

The model (5) leads us to consider the level lines instead
of the upper or lower level sets. This will give us one single
inclusion tree describing the image, in which a white object on
black background is represented in the same manner as a black
object on a white background.

Consider a bounded connected component of the level set
(upper or lower) C and its border ∂C. This border is an union
of Jordan curves.

∂C =
⋃

i

Ji(C) (6)
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Fig. 5. An example of a connected component of a level set C not simply

connected. Its border is composed of three closed Jordan curves, J0,

J1 and J2. The exterior Jordan curve is J2. Int J0 and Int J1 are

shown, so as Int J2 = C ∪ Int J0 ∪ Int J1 at the right.
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Fig. 6. The tree given by the FLLT corresponding to a simple image.

Notice that D is a hole in F .

We know, thanks to Jordan theorem [22], that each closed
Jordan curve J has an interior and an exterior (that is the com-
plementary of J has two open connected components, one of
them bounded and the other not; the interior of J , Int J , is
by definition the bounded one). If C is furthermore simply con-
nected, its border is composed of only one closed Jordan curve.
Though there can be “holes” in the connected components, we
know that there is only one of the Ji(C) such that C ⊂ Int Ji(C).
We will denote this Jordan curve J(C) (see figure 5). In the fol-
lowing, for any connected component of a level set C, we will
call “shape” the interior of J(C). The shape corresponds to
the connected component and its “holes”.

The sorting of the shapes can then be made thanks to their
geometrical inclusions. We can then create a tree structure as
follows: each node corresponds to a shape; descendants are the
shapes included into it, and the parent is the smallest shape
that contains it (see figure 6).

D. A scale-space representation

All classical representations we have seen have a scale-space
structure. That is, a structure that allows a separation between
large “size” and small “size” behaviors. For example, for the
frequency domain, the wavelength is the scale, in the wavelets
representation it is the dyadic scale reduction. . .

The inclusion tree induces also a scale-space structure of the
image. Indeed, due to inclusion, the shapes of the tree are
sorted with respect to their sizes. A shape obviously contains
only objects that have a smaller size. Therefore the scale is here

Fig. 7. We illustrate here the scale-space relation of the inclusion tree.

Up-Left: original picture 256x256, and then Up-right, and Down, the

boundaries of the shapes having an area larger than 10, 40, 800 pixels.

directly the size of the shapes in term of number of pixels.

Large scale objects will be kept near the root of the tree,
whereas small scale objects will be near the leaves. Figure 7
represents the level lines at scale 10, 40 and 800 pixels.

III. Principles of the Fast Level Lines Transform

Let us introduce the notations: from an image and its upper
and lower level sets (Xk and X l), we note cc(Xk, x) the con-
nected component of Xk containing a point x. The boundary
of cc(Xk, x) will be called J(Xk, x) and the corresponding shape
(its interior) Int J(Xk, x). Note that Int J(Xk, x) is just a set
of pixels and the notation involving k and x is used only to
distinguish the different shapes. Indeed there is only one shape
containing x and based on the level set Xk. The family of the
shapes associated to an image will be noted T .

A. A fast algorithm

The Fast Level Lines Transform (in short FLLT) is a de-
composition of an image into shapes, together with an inherent
structure of tree organizing them, which is complete informa-
tion on the image, in the sense that it is non-redundant and
sufficient information to reconstruct the image.

Of course, to extract a connected component of a level set Xk,
we could threshold the image at the gray level k and extract the
components of the binary image we obtain. But there is a much
smarter way to get it: the FLLT is a fast algorithm because
it takes advantage of the tree structure of the interiors of level
lines. It is a pyramidal algorithm, based on a region growing
principle. Indeed, each connected component of Xk is made
with connected components of Xk+1 and connected components
of the isolevel set u−1(k), so that starting from one component
of Xk+1, we let the region grow to pixels of value k (new pixels).
If this region is in contact with other components of Xk+1, we
include them in the region and resume the growing. We get a
component of Xk when the region cannot grow any more, that
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is all neighbor pixels of the region have a gray value less than
k.

As was explained above, a component of level set can have
holes within. A shape is constructed from it by “filling” the
holes, which are components of other level sets.

B. The output of the FLLT

As output of the FLLT, we get

• The family of shapes (T ) ordered in a tree structure (so that
we know what shape is contained in another).
• Within this tree structure, we store for each node (an element
of T ) whether or not it is brighter than its parent.
• For each pixel the smallest shape of T containing it.

This is enough to reconstruct the image, of course up to a local
contrast change. Indeed, given such information, we can define
an image v as follows: We choose an arbitrary gray level for the
root, and then we attribute to each node the gray level of its
parent plus 1 (resp. minus 1) if it is brighter (resp. darker) than
its parent. Finally, we attribute to each pixel in the image the
gray level of the smallest shape containing it. We get an image
that differs from the original one by a local change of contrast,
as defined in [15], [23].

The minimal necessary and sufficient data structure for a
shape is its position in the tree (a pointer to its parent, to one
child and to the next child of its father; the children of a given
shape are thus chained, this is a convenient data structure for
a tree where the number of children is not known in advance)
and a boolean indicating if it is brighter than its parent.

In the experiments presented in this article, we stored in ad-
dition the original gray level of the shape, so that we can re-
construct an image with comparable contrast for visual conve-
nience. But this information has been used only for final display.

C. Sketch of the algorithm

The steps of the algorithm are the following:

1. Build the tree of connected components of lower level sets
and the tree of connected components of upper level sets, taking
into account the holes in each connected component.
2. Find for each hole in a connected component the connected
component in the other tree corresponding to it.
3. Merge both trees, putting connected components corre-
sponding to holes as descendants of the ones containing them.

IV. Details of the algorithm

A. Building the two trees

It is clear that each bounded connected component of level
set of the image contains a local regional extremum (see [24] for
definition), namely a local maximum for upper level sets and
a local minimum for lower level sets. Thus the algorithm is as
follows for connected components of lower level sets:

1. Scan the image, pixel by pixel, until you find a not tagged
local minimum, x0, let g be its gray-level.
2. Create a new region (a set of pixels), R, initially void, a set
of pixels to add, A, initialized with x0, a set of neighbor pixels,
N , with currently no pixel.

R← ∅ A ← {x0} N ← ∅.

3. Examine all neighbors of A not in R, put them in the set of
neighbors N : N ← N ∪ ({x neighbor of a pixel in A}\R) , and
let

gN ← min
x∈N

u(x). (7)

Add the pixels of A to R, tag the pixels of A and update the
number of connected components of the border of R.

R← R∪A.

4. Three cases are dealt with differently.
(a) If g < gN , create a new connected component of lower

level set. If the number of connected components of the border
is more than 1, follow each border to find which is the exterior
border and which are the holes. The exterior border is the one
that contains the leftmost pixel. Keep one pixel belonging to
each hole found.
Recompute gN according to equation (7) and set g ← gN . Up-
date the sets,

A ← {x ∈ N / u(x) = g} N ← N\{x ∈ N / u(x) = g}, (8)

and return to step 3.
(b) If g = gN , the connected component is not complete. Up-

date A and N according to (8) and return to step 3.
(c) If g > gN , set the gray-level of the pixels of R to g, and

go to step 1.

In the algorithm, the neighboring pixel are defined by the 4
or 8 connectedness (the choice is discussed below).

The set N is an array of pixels sorted by their gray-level, so
that it is easy to extract the pixels of given gray-level. The way
we deal with holes is explained later.

B. Finding the shapes of the holes

At the preceding step, we know for each shape if it has holes,
and, if it has, one pixel belonging to each hole. We have to find
the shape of this hole. This can be easily done. Consider a point
y belonging to one hole of cc(Xk, x). Then the hole corresponds
to a shape of the type cc(X l, y) with l < k, since the hole is a
connected component of the complementary and it contains y.
In order to find the shape corresponding to the hole, it suffices
to take the smallest shape containing y in the tree of lower level
sets, and to go up the tree while the current shape has a gray
level less than k. For each y characterizing a hole in the shape
cc(Xk, x),

• Set S ← cc(X u(y), y).
• If Gray-level(Parent(S)) < λ, S ← Parent(S), else exit.

The shape of the hole is S at the end of this algorithm. Notice
that this shape can itself have another hole inside, etc.

C. Merging the trees

The last step consists in merging both trees. In fact, if no
shape has a hole in it, there is nothing to do, we simply put
an universal ancestor (the root of the tree) corresponding to
the whole image X−∞ = X+∞ and put as its children all the
shapes of both trees having no parent.

Now, if there are holes, it means that shapes from one tree
must be moved to the other tree. Consider the following prop-
erty:

If cc(Xk, x) has a hole cc(X l, y), then we have the alternative:

• either one of the children of cc(Xk, x) has also a hole, which
contains cc(X l, y);
• or cc(X l, y) has no parent (except the universal ancestor).

In order to merge the trees, we only have to find for each shape
S with a hole H in it whether one of its children S′ has a hole
H ′ containing H. If it is the case, we do nothing. Otherwise, we
put the shape of the hole H (and all its descendants) as child
of the shape S.
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D. Concluding the algorithm

Let us now explain how to extract the smallest shape con-
taining a given pixel x. We have four situations.

• If cc(Xu(x), x) and cc(Xu(x), x) are not bounded, then there
is no shape containing x.
• If cc(Xu(x), x) is bounded and cc(Xu(x), x) not, the shape is
cc(Xu(x), x).

• If cc(Xu(x), x) is not bounded and cc(Xu(x), x) is, the shape

is cc(Xu(x), x).
• If both cc(Xu(x), x) and cc(Xu(x), x) are bounded, then

Int J(Xu(x), x) ⊂ Int J(Xu(x), x) or

Int J(Xu(x), x) ⊃ Int J(Xu(x), x)

and then the smallest shape is the contained one.

E. Complexity of the algorithm

We scan each pixel once since it is included in exactly one
smallest shape. To make a component of level set grow, we have
to compare the gray levels of all the neighboring pixels. But how
many pixels are neighbors of a component of level set? Each
pixel has at most 8 neighbors (4 in 4-connectedness), so that it
is a neighbor of at most 8 shapes, and there are O(N) pixels (N
is the number of pixels) that are neighbors of a component of
level set. Each time, it is important to have the gray levels of
the neighbors sorted, done in O(N) if the image is quantized,
by using queues, as in [25] and in O(N log N) otherwise. We
need also to follow the boundaries of the shapes when they have
holes, which can be done in O(N).

Compare with the complexity of a direct implementation: for
each gray level, the image is thresholded, and the connected
components of the black pixels are extracted. The extraction of
the components of a binary image takes linear time, O(N). This
is to be multiplied by the number of gray levels in the image
(usually 256). The complexity if of order O(N), as the FLLT.
But now, if the image is not quantized, the number of different
gray levels in the image can be N . So we get a complexity of
order NO(N) = O(N2), compared to O(N log N) for the FLLT.

We implemented both algorithms on a Pentium 200 MMX,
compiled with gcc under Linux operating system. With an 8-
bit image of size 750× 600 (N = 450, 000 pixels), we got CPU
times of 6.5 s for the FLLT, 88.3 s for the method by successive
thresholds, and if the image was previously quantized by a factor
8, 5.1 s for the FLLT and 12.1 s for the direct method.

V. Technical parts of the algorithm

A. Which connectedness to choose?

In discrete images we have two notions of connectedness, 4-
and 8-connectedness, according to the number of neighbors of
the pixels. Which notion of discrete connectedness to use?
The answer is: use 4-connectedness for lower level set and 8-
connectedness for upper level set, or the inverse, but do not
take the same connectedness for lower and upper level sets.

If we used 8-connectedness for both, Jordan theorem would
not be verified, and we could get intersecting level lines (see
figure 8). Neither can we use 4-connectedness for both (see
figure 9): in this case, there is no reconstruction for the image.

Another possibility is to consider an hexagonal lattice. Shift
one other two lines by half a pixel, so that a pixel has 6 neighbors
and there is only one connectedness, the 6-connectedness. There
is no dissymmetry between upper and lower level sets, but the
choice of the direction of the shift was arbitrary.

J J’

0
0

1

Fig. 8. Jordan theorem is not verified if we consider 8-connectedness for

both lower and upper level sets. Here, X 0 has one bounded connected

component C. The exterior border of this set is J, whereas the interior

border of the level set X1 is J ′. The complementary of J has two

connected components, but the exterior of J ′, which is included in

the complementary, intersects both.

1

0 [u <= 1]

2

[u >= 1]

Fig. 9. If we consider 4-connectedness for both lower and upper level

sets, we do not have a reconstruction. Left: original image. Middle

and right: two shapes extracted from the image. The two shapes have

one pixel of intersection, whereas none is included in the other.

B. Dealing with holes

B.1 The detection of holes

Remember that the construction of the connected compo-
nents of level sets is done by region-growing. We start with
one pixel, then add its neighbors if possible, then the neighbors
of the neighbors, etc. The number of holes is the number of
connected components of the border minus 1 (because of the
exterior border). The idea here is that by adding a point to a
connected set, we can update the number of connected compo-
nents of the border using only the local configuration.

The border of a region is encoded by inter-pixel directions:
each time two 4-neighbors belong one to the region and the other
not, we put an inter-pixel direction between both, oriented so
that it leaves the pixel in the region to its right by convention
(see figure 10). The modification of the border when we add a
pixel to a region is straightforward.

The goal was to find the change of the number of connected
components of the border when we add one pixel to an existing

Fig. 10. The usual way the local configuration of the border of a region

is coded. In each figure, the pixel inside the region is the dark one.

The border is indicated by inter-pixel directions, always leaving the

region to the right.

1

21 1 1

1 1 1

Fig. 11. The increment of the number of connected components of the

border when we add a point to a connected region according to its

neighborhood. Up: for a region in 4-connectedness (complementary

in 8-connectedness). Down: for a region in 8-connectedness (comple-

mentary in 4-connectedness). Dark pixels: inside the region. White

pixels: outside the region.
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(connected) region. It is enough to know the configuration of
the region in the 3×3 neighborhood of the pixel. The increment
of the number of connected components of the border when we
add one pixel is shown for a few configurations in figure 11.

B.2 The determination of the holes

Knowing the number of connected components of the bound-
ary of a shape, the number of holes is simply this number minus
1. If there are holes, we must find one pixel in each. For that,
we follow each connected component of the (oriented) border.

VI. Experiments

A. Simplifications of image

A first kind of applications is based on manipulation of the
tree itself. Figure 12 represents an image at different scales 0,
10, 40, 800 pixels. At scale 800, all shapes having an area less
than 800 pixels have been removed, which is a drastic simpli-
fication of the image! Note that this look-like segmentation is
not based on the contrast. This scale dependent representation
is an implementation of a filtering proposed by Masnou in [26].

This simplification of the image is also close to the one pro-
posed by Vincent, in [24]. Indeed, he proposed to eliminate s-
mall connected components successively of the upper level sets,
and then of the lower level sets. But, with respect to the scaled
inclusion tree, first this method introduces a dissymmetry be-
tween black and white objects. And, second the area criterion
to remove shapes does not count the area of some of its holes
depending of the respective gray level (see figure 13).

If B is the set of connected sets containing the origin O, of
area larger than a, and the operators SIB and ISB are

SIB u(x) = sup
B∈B

inf
y∈x+B

u(y) (9)

ISB u(x) = inf
B∈B

sup
y∈x+B

u(y), (10)

they do not commute: SIB ◦ ISB 6= ISB ◦SIB. We can see that
Vincent defines in [24] two slightly different filters.

For a connected set B, let us call its “filled interior” B plus its
holes (that is, the smallest simply connected set containing B)
and its interior area the area of its “filled interior”. The variant
proposed by Masnou defines instead B′ as the set of connected
sets of points whose “filled interior” contains the origin 0 and of
interior area larger or equal to a. The operators SIB′ and ISB′
are defined as in (9) and (10), and this time the operators do
commute: SIB′ ◦ ISB′ = ISB′ ◦SIB′ , which avoids to introduce
a dissymmetry between upper and lower level sets.

One can also select the shapes based on other criteria than
their size. We can for example remove the irregular shapes
according to a measure of the complexity of their boundaries,
see figure 14. This allows some selective removals of the shapes
based on their probability to have been generated by physical
objects, or by the captor device (noise, dithering, etc).

If one is interested in a representation of the image that has
a very low number of shapes (for compression purposes, to re-
duce the computation cost of the following manipulations, etc),
one can also remove the shapes that have an area close to their
parent and to one of their children, because the corresponding
level lines must be nearly the same. Figure 15 shows this ex-
periment applied to the image of figure 14. Notice that such
a simplification, very easy with the inclusion tree, would have
been intricate without.

B. Comparison of images

The inclusion tree allows also a fast comparison between im-
ages, in a manner independent from the contrast (see figure 16).

Fig. 12. Up-left: original image 256x256, Up-right: image at scale 10 (all

shapes having area less than 10 pixels are removed), Down: image at

scale 40, and 800 (sum of the CPU time for the 3 processed image:

0.38 s on a P200MMX).

Fig. 13. Left: a simple image. Up: Successive removals of the connected

components of the upper and then lower level sets with an increasing

area threshold. The black ring disappears before the white circle,

since the (lower) level set in which it is embedded has a smaller area

than the (upper) one of the white circle. Down: representations of

the image across the scales of the inclusion tree: the circles disappear

according to their interior size.

As in [27], we associate to each shape some basic characteristic-
s, as its size, position, inertia. . . They are then used to compare
shapes. A shape of an image 1, will be said to match in the
image 2 if there exists a shape of the image 2 that has approxi-
matively the same parameters at the same location [28]. Notice
that using the pyramidality is very advantageous to compute
the characteristics. Since the moments are additive characteris-
tics, when constructing a shape, we have already computed the
moments of its descendants, so it suffices to add them to the
moments associated to the new pixels. In this way, we count
exactly one time each pixel, which would not be the case if the
shapes were extracted by successive thresholds.

Figure 16 is made as follows: we reconstruct the image from
the subset of the shapes in left image that have no matching
shape in the right image. A comparison with a simple pixel by
pixel difference shows the importance of being contrast invariant
if we want to identify images of the same scene. Notice also that
this reconstruction is not symmetrical, which allows to identify
the shapes from one image that are not present in the other one,
which is impossible with a pixel by pixel difference.

Following the technique described in [27], one can also recon-
struct an image from the set of the shapes that have matched.
Given two images u1 and u2, we define u1 ∩ u2 as the set of the
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Fig. 14. Left: original image (512 × 512), composed of 89379 shapes.

Right: simplified image, where level sets of area too small (< 20

pixels) or of too irregular boundary are removed from the tree. There

are 11, 371 (13%) shapes of sufficient area and there remains only

4174 (5%) sufficiently regular shapes. Notice that nothing important

seems to be lost. Bottom: level lines of the images.

Fig. 15. Left: The 4174 regular level lines of the simplified image of

the last figure. Right: The remaining 1753 regular level lines after

removal of the shapes that have an area similar to their parent and

to one of their children. Notice how close the images look, in spite

of the high number of eliminated shapes.

shapes of u1 that match in u2. That is, from the inclusion tree
of u1: T1, we remove all the shapes for which we cannot find a
shape in the inclusion tree of u2 that is similar. This yields a
tree T ′1 , from which we can reconstruct an image: u1 ∩ u2.

This definition of the intersection differs slightly from the ones
defined in [27]. Indeed, the authors define the “shapes” as the
connected components of the bi-level sets (that is, connected
part of the pixels that have a gray level between two values
λ and µ, λ ≤ µ). By this, they obtain for u1 ∩ u2 a multi-
valued image, where each point can take the values between a
lower and an upper intersection image. We believe that this
is not fully satisfactory since first, the so defined intersection
is multi-valued, second, the complexity is high due to the two
thresholdings that define the bi-level sets: for 8-bit images, this
yields 32, 640 cuts of the image! Their lower (resp. upper)
intersections are somehow related to a lower (resp. a upper)

Fig. 16. Comparisons of images. Up: two original images. Down: The

quantized image (left) reconstructed from the shapes of image 1 hav-

ing no similar shape in image 2 and a quantized pixel by pixel differ-

ence of the images (right).

intersection of images obtained by considering the connected
components of the lower (resp. upper) level sets that match.
Our definition of the intersection based on the inclusion tree
yields one single image!

Note also that u2∩u1 differs from u1∩u2. u1∩u2 corresponds
roughly to image u1 minus the objects not present in u2. Of
course, the remaining objects and their positions did not change.
Figure 17 displays the intersections between two images (in the
middle row) and the removed objects (in the last row).

VII. Conclusion

The inclusion tree is a non-redundant and full representation
of an image, invariant to local changes of contrast. The basic
objects are the interiors of the connected pieces of the level
lines, that we call “shapes”. The organization of the shapes of
an image can be represented in a tree built on their geometrical
inclusion. This representation inherits a scale-space property,
where the scale is the area. It does not involve any smoothing
of the image [29], therefore at any scale, the image does not
appear blurred, on the contrary to the linear scale-space.

At some scale (minimum number of pixels), shapes have a
certain stability that allows some contrast independent com-
parisons between images as shown in the experiments.

The locality chosen in this representation is driven by the
connectedness. The boundary of a shape, which is a connected
component of the level lines, is then taken as a whole. However,
in presence of partial occlusions for example, only pieces of the
shapes can be compared. Two strategies can address this prob-
lem. The simplest would be to define partial comparison be-
tween shapes. Another would be to aggregate pixel information
into “shapes” based on another criterion than connectedness. . .



8 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 9, 5, PP. 860–872, MAY 2000

Fig. 17. Up: two images 256x256 of a crossing (few minutes differences).

Middle : left (resp. right) objects of the up-left (resp. up-right)

image that are entirely in the right (resp. left). Down: Objects

that are not matching entirely (sum of the CPU time for the two

intersections: 5.1 s on a P200MMX).
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Dynamique, Ecole Normale Supérieure (Ulm), France,

concerned the construction of wavelet bases used in

new schemes of resolution of partial differential equa-

tions. He is currently a PhD student (adviser: Jean-

Michel Morel) at the Ecole Normale Supérieure de

Cachan (France). His research fields are mathemat-

ical morphology applied to image representation, im-

age registration, comparison of images and motion es-

timation.

Frédéric Guichard is a former student of the Ecole

Normale Supérieure (Ulm) of Paris (France), in math.

He received the PhD level in 1994 at the University

Paris Dauphine (France). Jean-Michel Morel was his

adviser. The PhD proposed a characterisation of the

scale-spaces (theory of smoothing) by partial differen-

tial equations. He received the Cisi ingénierie award in

1993, and the Science and Defence award (French De-

fence Ministry) in 1996 for joined researches. During

1995-1996, he developed in Cognitech, Inc. (Pasade-

na, CA USA) an algorithm for motion estimation and

images fusion (patent pending). He is now working

for the French Ministry of Equipment at Inrets (Paris), on developing video

processing tools for roads surveillance, car/people detections or counting, and

anti-collision systems for vehicles.


